884 resultados para integrated shape and topology optimisation (IST)
Resumo:
Purpose: We term the visual field position from which the pupil appears most nearly circular as the pupillary circular axis (PCAx). The aim was to determine and compare the horizontal and vertical co-ordinates of the PCAx and optical axis from pupil shape and refraction information for only the horizontal meridian of the visual field. Method: The PCAx was determined from the changes with visual field angle in the ellipticity and orientation of pupil images out to ±90° from fixation along the horizontal meridian for the right eyes of 30 people. This axis was compared with the optical axis determined from the changes in the astigmatic components of the refractions for field angles out to ±35° in the same meridian. Results: The mean estimated horizontal and vertical field coordinates of the PCAx were (‒5.3±1.9°, ‒3.2±1.5°) compared with (‒4.8±5.1°, ‒1.5±3.4°) for the optical axis. The vertical co-ordinates of the two axes were just significantly different (p =0.03) but there was no significant correlation between them. Only the horizontal coordinate of the PCAx was significantly related to the refraction in the group. Conclusion: On average, the PCAx is displaced from the line-of-sight by about the same angle as the optical axis but there is more inter-subject variation in the position of the optical axis. When modelling the optical performance of the eye, it appears reasonable to assume that the pupil is circular when viewed along the line-of-sight.
Resumo:
The controlled synthesis of nanostructured materials remains an ongoing area of research, especially as the size, shape and composition of nanomaterials can greatly influence their properties and applications. In this work we present the electrodeposition of highly dendritic platinum rich platinum-lead nanostructures, where lead acetate acts as an inorganic shape directing agent via underpotential deposition on the growing electrodeposit. It was found that these nanomaterials readily oxidise at potentials below monolayer oxide formation, which significantly impacts on the methanol electrooxidation reaction and correlates with the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis. Additionally these materials were tested for their surface enhanced Raman scattering (SERS) activity, where the high density of sharp tips provides promise for their application as SERS substrates.
Resumo:
Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation.
Resumo:
Writing is a complex and learned activity in that it requires us to shape our thoughts into words and texts that are appropriate for the purpose, audience and medium of a variety of communicative forms. Writers must constantly make decisions about how to represent their subject matter and themselves through language. In this way, writing can be conceptualised as a performance whereby writers shape and represent their identities as they mediate social structures and personal considerations. In this paper I use theories of reflexivity and discourse to analyse interviews and writing samples of culturally and linguistically diverse Australian primary students for evidence of particular kinds of writing identities. Findings indicate a clear influence of particular teaching strategies and contexts on the writing identities of students. I argue that making students aware of their writing choices, the influences on, and the potential impact of those choices on themselves, their text and their audience, is a new imperative in the teaching of writing.
Resumo:
This study concerned development and validation of a simple and inexpensive method involving partial coherence interferometry for measuring retinal shape, and its use in exploring association between retinal shape and myopia. Retinal shapes estimates using partial coherence interferometry were validated against estimates obtained from magnetic resonance imaging. Steeper retinas were found along the horizontal than along the vertical meridian, in myopes than in emmetropes, and in East Asian myopes than in Caucasian myopes. The racial differences, combined with the high prevalence of myopia in East Asia, suggest that retinal shape may play a role in myopia development.
Resumo:
The Arts are acknowledged for their potential in providing learners with multiple 'languages' with which they might make their learning visible across all levels of education. This chapter explores how the integration of the Arts and education for sustainabilty can provide expanded opportunities for seeing, understanding and responding to the sustainability imperative. Such approaches encourage broad engagement and expression of ideas about sustainability that extend beyond more common approaches that have mostly responded to sustainability through the languages of the Sciences and geography. Traditionally, the Arts have been valued highly by the early childhood education field and typically lie at the heart of early childhood programs. Increasing engagement with the sustainability agenda in early childhood contexts suggests that teachers might find ways to integrate early education for sustainability with the Arts in meaningful ways. This chapter explores how an integrated Arts and Humanities subject in an early childhood teacher education course in Queensland, Australia provides a context for the integration of sustainability as a cross-curricular thread in teacher education, reflecting recent national curriculum innovation in Australia.
Resumo:
Tensions surrounding social media in the employment relationship are increasingly evident in the media, public rhetoric, and courts and employment tribunals. Yet the underlying causes and dimensions of these tensions have remained largely unexplored. This article firstly reviews the available literature addressing social media and employment, outlining three primary sources of contestation: profiling, disparaging posts and blogs, and private use of social media during work time. In each area, the key dynamics and underlying concerns of the central actors involved are identified. The article then seeks to canvas explanations for these forms of contestation associated with social media at work. It is argued that the architecture of social media disrupts traditional relations in organisational life by driving employer and employee actions that (re)shape and (re)constitute the boundaries between public and private spheres. Although employers and employees are using the same social technologies, their respective concerns about and points of entry to these technologies, in contrast to traditional manifestations of conflict and resistance, are asymmetric. The article concludes with a representational summary of the relative legitimacy of concerns for organisational actors and outlines areas for future research.
Resumo:
This thesis examines the short-term changes occurring in a number of the eye's structures during reading tasks, and explores how these changes differ between normal eyes, and those with short-sightedness (myopia). This research revealed changes in the shape and thickness of a number of the eye's structures during near work, and aspects of these changes showed differences associated with myopia. These findings have potentially important implications for our understanding of the role of near work in the development and progression of myopia.
Resumo:
Collecting has become a popular hobby within Western society, with collectables including anything from ‘bottle tops’ to ‘skyscrapers’. As the nature and size of these collections can impact upon the use of space in the home, the purpose of this study is to explore the relationship between the collections, space in the home and the impacts on others. This qualitative study explores the experiences of 11 Australian collectors, investigating the motivations, practices and adaption techniques used within their urban home environment. The themes of sentimentality, sociability and spatial tensions, including physical, personal and use of space are discussed within the context of their home and family environments. Overall the practice of collecting objects is a complex, varied, sentimental and sociable activity, providing enjoyment, knowledge and friendships. Space can be a central consideration to the practice of collecting as collections shape and are shaped by the available space in a household.
Resumo:
Introduction & Aims Optimising fracture treatments requires a sound understanding of relationships between stability, callus development and healing outcomes. This has been the goal of computational modelling, but discrepancies remain between simulations and experimental results. We compared healing patterns vs fixation stiffness between a novel computational callus growth model and corresponding experimental data. Hypothesis We hypothesised that callus growth is stimulated by diffusible signals, whose production is in turn regulated by mechanical conditions at the fracture site. We proposed that introducing this scheme into computational models would better replicate the observed tissue patterns and the inverse relationship between callus size and fixation stiffness. Method Finite element models of bone healing under stiff and flexible fixation were constructed, based on the parameters of a parallel rat femoral osteotomy study. An iterative procedure was implemented, to simulate the development of callus and its mechanical regulation. Tissue changes were regulated according to published mechano-biological criteria. Predictions of healing patterns were compared between standard models, with a pre-defined domain for callus development, and a novel approach, in which periosteal callus growth is driven by a diffusible signal. Production of this signal was driven by local mechanical conditions. Finally, each model’s predictions were compared to the corresponding histological data. Results Models in which healing progressed within a prescribed callus domain predicted that greater interfragmentary movements would displace early periosteal bone formation further from the fracture. This results from artificially large distortional strains predicted near the fracture edge. While experiments showed increased hard callus size under flexible fixation, this was not reflected in the standard models. Allowing the callus to grow from a thin soft tissue layer, in response to a mechanically stimulated diffusible signal, results in a callus shape and tissue distribution closer to those observed histologically. Importantly, the callus volume increased with increasing interfragmentary movement. Conclusions A novel method to incorporate callus growth into computational models of fracture healing allowed us to successfully capture the relationship between callus size and fixation stability observed in our rat experiments. This approach expands our toolkit for understanding the influence of different fixation strategies on healing outcomes.
Resumo:
Structural identification (St-Id) can be considered as the process of updating a finite element (FE) model of a structural system to match the measured response of the structure. This paper presents the St-Id of a laboratory-based steel through-truss cantilevered bridge with suspended span. There are a total of 600 degrees of freedom (DOFs) in the superstructure plus additional DOFs in the substructure. The St-Id of the bridge model used the modal parameters from a preliminary modal test in the objective function of a global optimisation technique using a layered genetic algorithm with patternsearch step (GAPS). Each layer of the St-Id process involved grouping of the structural parameters into a number of updating parameters and running parallel optimisations. The number of updating parameters was increased at each layer of the process. In order to accelerate the optimisation and ensure improved diversity within the population, a patternsearch step was applied to the fittest individuals at the end of each generation of the GA. The GAPS process was able to replicate the mode shapes for the first two lateral sway modes and the first vertical bending mode to a high degree of accuracy and, to a lesser degree, the mode shape of the first lateral bending mode. The mode shape and frequency of the torsional mode did not match very well. The frequencies of the first lateral bending mode, the first longitudinal mode and the first vertical mode matched very well. The frequency of the first sway mode was lower and that of the second sway mode was higher than the true values, indicating a possible problem with the FE model. Improvements to the model and the St-Id process will be presented at the upcoming conference and compared to the results presented in this paper. These improvements will include the use of multiple FE models in a multi-layered, multi-solution, GAPS St-Id approach.
Resumo:
Road transport plays a significant role in various industries and mobility services around the globe and has a vital impact on our daily lives. However it also has serious impacts on both public health and the environment. In-vehicle feedback systems are a relatively new approach to encouraging driver behavior change for improving fuel efficiency and safety in automotive environments. While many studies claim that the adoption of eco-driving practices, such as eco-driving training programs and in-vehicle feedback to drivers, has the potential to improve fuel efficiency, limited research has integrated safety and eco-driving. Therefore, it is crucial to understand the human factors related theories and practices which will inform the design of an in-vehicle Human Machine Interface (HMI) that could provide real-time driver feedback and consequently improve both fuel efficiency and safety. This paper provides a comprehensive review of the current state of published literature on in-vehicle systems to identify and evaluate the impact of eco-driving and safety feedback systems. This paper also discusses how these factors may conflict with one another and have a negative effect on road safety, while also exploring possible eco-driving practices that could encourage more sustainable, environmentally-conscious and safe driving behavior. The review revealed a lack of comprehensive theoretical research integrating eco-driving and safe driving, and no current available HMI covering both aspects simultaneously. Furthermore, the review identified that some eco-driving in-vehicle systems may enhance fuel efficiency without compromising safety. The review has identified a range of concepts which can be developed to influence driver acceptance of safety and eco-driving systems within the area of HMI. This can promote new research aimed at enhancing our understanding of the relationship between eco-driving and safety from the human factors viewpoint. This provides a foundation for developing innovative, persuasive and acceptable in-vehicle HMI systems to improve fuel efficiency and road safety.
Resumo:
Efficient and accurate geometric and material nonlinear analysis of the structures under ultimate loads is a backbone to the success of integrated analysis and design, performance-based design approach and progressive collapse analysis. This paper presents the advanced computational technique of a higher-order element formulation with the refined plastic hinge approach which can evaluate the concrete and steel-concrete structure prone to the nonlinear material effects (i.e. gradual yielding, full plasticity, strain-hardening effect when subjected to the interaction between axial and bending actions, and load redistribution) as well as the nonlinear geometric effects (i.e. second-order P-d effect and P-D effect, its associate strength and stiffness degradation). Further, this paper also presents the cross-section analysis useful to formulate the refined plastic hinge approach.
Resumo:
Foot morphology and function has received increasing attention from both biomechanics researchers and footwear manufacturers. In this study, 168 habitually unshod runners (90 males whose age, weight & height were 23 +/- 2.4years, 66 +/- 7.1kg & 1.68 +/- 0.13m and 78 females whose age, weight & height were 22 +/- 1.8years, 55 +/- 4.7kg & 1.6 +/- 0.11m) (Indians) and 196 shod runners (130 males whose age, weight & height were 24 +/- 2.6years, 66 +/- 8.2kg & 1.72 +/- 0.18m and 66 females whose age, weight & height were 23 +/- 1.5years, 54 +/- 5.6kg & 1.62 +/- 0.15m)(Chinese) participated in a foot scanning test using the easy-foot-scan (a three-dimensional foot scanning system) to obtain 3D foot surface data and 2D footprint imaging. Foot length, foot width, hallux angle and minimal distance from hallux to second toe were calculated to analyze foot morphological differences. This study found that significant differences exist between groups (shod Chinese and unshod Indians) for foot length (female p = 0.001), width (female p = 0.001), hallux angle (male and female p = 0.001) and the minimal distance (male and female p = 0.001) from hallux to second toe. This study suggests that significant differences in morphology between different ethnicities could be considered for future investigation of locomotion biomechanics characteristics between ethnicities and inform last shape and design so as to reduce injury risks and poor performance from mal-fit shoes.