920 resultados para half-life measurement
Resumo:
OBJECTIVES: Acute retinal necrosis is a rapidly progressive and devastating viral retinitis caused by the herpesvirus family. Systemic acyclovir is the treatment of choice; however, the progression of retinal lesions ceases approximately 2 days after treatment initiation. An intravitreal injection of acyclovir may be used an adjuvant therapy during the first 2 days of treatment when systemically administered acyclovir has not reached therapeutic levels in the retina. The aims of this study were to determine the pharmacokinetic profile of acyclovir in the rabbit vitreous after intravitreal injection and the functional effects of acyclovir in the rabbit retina. METHODS: Acyclovir (Acyclovir; Bedford Laboratories, Bedford, OH, USA) 1 mg in 0.1 mL was injected into the right eye vitreous of 32 New Zealand white rabbits, and 0.1 mL sterile saline solution was injected into the left eye as a control. The animals were sacrificed after 2, 9, 14, or 28 days. The eyes were enucleated, and the vitreous was removed. The half-life of acyclovir was determined using high-performance liquid chromatography. Electroretinograms were recorded on days 2, 9, 14, and 28 in the eight animals that were sacrificed 28 days after injection according to a modified protocol of the International Society for Clinical Electrophysiology of Vision. RESULTS: Acyclovir rapidly decayed in the vitreous within the first two days after treatment and remained at low levels from day 9 onward. The eyes that were injected with acyclovir did not present any electroretinographic changes compared with the control eyes. CONCLUSIONS: The vitreous half-life of acyclovir is short, and the electrophysiological findings suggest that the intravitreal delivery of 1 mg acyclovir is safe and well tolerated by the rabbit retina.
Resumo:
Background and Objective The use of metformin throughout gestation by women with polycystic ovary syndrome (PCOS) and type 2 diabetes mellitus (T2DM) significantly reduces the number of first-trimester spontaneous abortions and the rate of occurrence of gestational diabetes and hypertensive syndromes. Metformin is taken up into renal tubular cells by organic cation transport 2 (OCT2) and eliminated unchanged into the urine. The objective of this study was to analyse the influence of T2DM on the pharmacokinetics of metformin in obese pregnant women and in a control group of non-diabetic obese pregnant women with PCOS. Methods Eight non-diabetic obese pregnant women with PCOS and nine obese pregnant women with T2DM taking oral metformin 850 mg every 12 h were evaluated throughout gestation. Serial blood samples were collected over a 12-h period during the third trimester of pregnancy. Steady-state plasma concentrations of metformin were determined by high-performance liquid chromatography with a UV detector. The pharmacokinetic results of the two groups, reported as median and 25th and 75th percentile, were compared statistically using the Mann Whitney test, with the level of significance set at p < 0.05. Results The pharmacokinetic parameters detected for PCOS versus T2DM patients, reported as median, were, respectively: elimination half-life 3.75 versus 4.00 h; time to maximum concentration 2.00 versus 3.00 h; maximum concentration 1.42 versus 1.21 mu g/mL; mean concentration 0.53 versus 0.56 mu g/mL; area under the plasma concentration time curve from time zero to 12 h 6.42 versus 6.73 mu g.h/mL; apparent total oral clearance 105.39 versus 98.38 L/h; apparent volume of distribution after oral administration 550.51 versus 490.98 L; and fluctuation (maximum minimum concentration variation) of 179.56 versus 181.73%. No significant differences in pharmacokinetic parameters were observed between the groups. Conclusion T2DM in the presence of insulin use does not influence the pharmacokinetics of metformin in pregnant patients, demonstrating the absence of a need to increase the dose, and consequently does not influence the OCT2-mediated transport in pregnant women with PCOS.
Resumo:
An endo-1,5-arabinanase (abnA) encoding gene from Aspergillus niveus was identified, cloned and successfully expressed in Aspergillus nidulans strain A773. Based on amino acid sequence comparison, the 34-kDa enzyme could be assigned to CAZy GH family 43. Characterization of purified recombinant endo-1,5-arabinanase (AbnA) revealed that it is active at a wide pH range (pH 4.0-7.0) and an optimum temperature at 70 degrees C. The immobilization of the AbnA was performed via covalent binding onto agarose-modified supports: glyoxyl iminodiacetic acid-Ni2+, glyoxyl amine, glyoxyl (4% and 10%) and cyanogen bromide activated sepharose. The yield of immobilization was similar on glyoxyl amine and glyoxyl (96%), and higher than glyoxyl iminodiacetic acid-Ni2+ (43%) support. The thermal inactivation of these immobilized preparations showed that the stability of the AbnA immobilized on glyoxyl 4 and 10% was improved by 4.0 and 10.3-fold factor at 70 degrees C. The half-life of glyoxyl 4% derivative at 60 degrees C was >48 h (pH 5), 9 h (pH 7) and 88 min (pH 9). The major hydrolysis product of debranched arabinan or arabinopentaose by glyoxyl agarose-immobilized AbnA was arabinobiose. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Polyphenol-enriched fractions from natural sources have been proposed to interfere with angiogenesis in pathological conditions. We recently reported that red propolis polyphenols (RPP) exert antiangiogenic activity. However, molecular mechanisms of this activity remain unclear. Here, we aimed at characterizing molecular mechanisms to explain the impact of RPP on endothelial cells' (EC) physiology. We used in vitro and ex and in vivo models to test the hypothesis that RPP inhibit angiogenesis by affecting hypoxia-inducible factor-1 alpha (HIF1 alpha) stabilization in EC. RPP (10 mg/L) affected angiogenesis by reducing migration and sprouting of EC, attenuated the formation of new blood vessels, and decreased the differentiation of embryonic stem cells into CD31-positive cells. Moreover, RPP (10 mg/L) inhibited hypoxia- or dimethyloxallylglycine-induced mRNA and protein expression of the crucial angiogenesis promoter vascular endothelial growth factor (VEGF) in a time-dependent mariner. Under hypoxic conditions, RPP at 10 mg/L, supplied for 1-4 h, decreased HIF1 alpha protein accumulation, which in turn attenuated VEGF gene expression. In addition, RPP reduced the HIF1 alpha protein half-life from similar to 58 min to 38 min under hypoxic conditions. The reduced HIF1 alpha protein half-life was associated with an increase in the von Hippel-Lindau (pVHL)-dependent proteasomal degradation of HIF1 alpha. RPP (10 mg/L, 4 h) downregulated Cdc42 protein expression. This caused a corresponding increase in pVHL protein levels and a subsequent degradation of HIF1 alpha. In summary, we have elucidated the underlying mechanism for the antiangiogenic action of RPP, which attenuates HIF1 alpha protein accumulation and signaling. J. Nutr. 142: 441-447, 2012.
Resumo:
Iodide excess acutely downregulates NIS mRNA expression, as already demonstrated. PCCl3 cells treated or not with Nal, Nal + NaClO4 or Nal + Methimazole, for 30 min to 24 h, were used to further explore how iodide reduces NIS gene expression. NIS mRNA expression was evaluated by Real-Time PCR; its poly(A) tail length, by RACE-PAT; its translation rate, by polysome profile; total NIS content, by Western blotting. NIS mRNA decay rate was evaluated in actinomycin-D-treated cells, incubated with or without Nal for 0-6 h. Iodide treatment caused a reduction in NIS mRNA expression, half-life, poly(A) tail length, recruitment to ribosomes, as well as NIS protein expression. Perchlorate, but not methimazole, prevented these effects. Therefore, reduced poly(A) tail length of NIS mRNA seems to be related to its decreased half-life, in addition to its translation impairment. These data provide new insights about the molecular mechanisms involved in the rapid and posttranscriptional inhibitory effect of iodide on NIS expression. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Defining pharmacokinetic parameters and depletion intervals for antimicrobials used in fish represents important guidelines for future regulation by Brazilian agencies of the use of these substances in fish farming. This article presents a depletion study for oxytetracycline (OTC) in tilapias (Orechromis niloticus) farmed under tropical conditions during the winter season. High performance liquid chromatography, with fluorescence detection for the quantitation of OTC in tilapia fillets and medicated feed, was developed and validated. The depletion study with fish was carried out under monitored environmental conditions. OTC was administered in the feed for five consecutive days at daily dosages of 80 mg/kg body weight. Groups of ten fish were slaughtered at 1, 2, 3, 4, 5, 8, 10, 15, 20, and 25 days after medication. After the 8th day posttreatment, OTC concentrations in the tilapia fillets were below the limit of quantitation (13 ng/g) of the method. Linear regression of the mathematical model of data analysis presented a coefficient of 0.9962. The elimination half- life for OTC in tilapia fillet and the withdrawal period were 1.65 and 6 days, respectively, considering a percentile of 99% with 95% of confidence and a maximum residue limit of 100 ng/g. Even though the study was carried out in the winter under practical conditions where water temperature varied, the results obtained are similar to others from studies conducted under controlled temperature.
Resumo:
The aims of this study were to evaluate the influence of cardiopulmonary bypass (CPB) on the plasma concentrations and pharmacokinetics of cefuroxime and to assess whether the cefuroxime dose regimen (a 1.5 g dose, followed by 750 mg every 6 h for 24 h) is adequate for cardiac surgery antibiotic prophylaxis. A prospective, controlled, observational study compared patients undergoing coronary surgery with CPB (CPB group, n = 10) or off-pump surgery (off-pump group, n = 9). After each cefuroxime dose, blood samples were sequentially collected and analysed using high-efficiency chromatography. For demographic data and pharmacokinetic parameters, the authors used Fisher's exact test for nominal variables and Student's t-test and the Mann-Whitney U-test for parametric and non-parametric variables, respectively. Plasma concentrations were compared using ANOVA, and the percentage of patients with a remaining plasma concentration of > 16 mg/l within 6 h after each bolus was quantified in tabular form. After each cefuroxime bolus was administered, both groups presented a significant decrease in plasma concentration over time (P < 0.001), without differences between the groups. The mean CPB time of 59.7 +/- 21.1 min did not change cefuroxime plasma concentrations or pharmacokinetics. The mean clearance +/- SD (ml/kg/min) and median elimination half-life (h) of the CPB group versus the off-pump group were 1.7 +/- 0.7 versus 1.6 +/- 0.6 (P = 0.67), respectively, and 2.2 versus 2.3 (P = 0.49), respectively. Up to 3 h following the first bolus of 1.5 g, but not after 6 h, all patients had plasma concentrations > 16 mg/l (CPB group = 20% and off-pump group = 44%). However, after all 750 mg boluses were administered, concentrations < 16 mg/dl were reached within 3 h. CPB does not influence cefuroxime plasma concentrations. The dosing regimen is adequate for the intraoperative period, but in the immediate postoperative period, it requires further review.
Resumo:
Background: Despite advances in supportive care, sepsis-related mortality remains high, especially in patients with acute kidney injury (AKI). Erythropoietin can protect organs against ischemia and sepsis. This effect has been linked to activation of intracellular survival pathways, although the mechanism remains unclear. Continuous erythropoietin receptor activator (CERA) is an erythropoietin with a unique pharmacologic profile and long half-life. We hypothesized that pretreatment with CERA would be renoprotective in the cecal ligation and puncture (CLP) model of sepsis-induced AKI. Methods: Rats were randomized into three groups: control; CLP; and CLP+CERA (5 mu g/kg body weight, i.p. administered 24 h before CLP). At 24 hours after CLP, we measured creatinine clearance, biochemical variables, and hemodynamic parameters. In kidney tissue, we performed immunoblotting-to quantify expression of the Na-K-2Cl cotransporter (NKCC2), aquaporin 2 (AQP2), Toll-like receptor 4 (TLR4), erythropoietin receptor (EpoR), and nuclear factor kappa B (NF-kappa B)-and immunohistochemical staining for CD68 (macrophage infiltration). Plasma interleukin (IL)-2, IL-1 beta, IL-6, IL-10, interferon gamma, and tumor necrosis factor alpha were measured by multiplex detection. Results: Pretreatment with CERA preserved creatinine clearance and tubular function, as well as the expression of NKCC2 and AQP2. In addition, CERA maintained plasma lactate at normal levels, as well as preserving plasma levels of transaminases and lactate dehydrogenase. Renal expression of TLR4 and NF-kappa B was lower in CLP+CERA rats than in CLP rats (p<0.05 and p<0.01, respectively), as were CD68-positive cell counts (p<0.01), whereas renal EpoR expression was higher (p<0.05). Plasma levels of all measured cytokines were lower in CLP+CERA rats than in CLP rats. Conclusion: CERA protects against sepsis-induced AKI. This protective effect is, in part, attributable to suppression of the inflammatory response.
Resumo:
This study compares two xylanases produced by filamentous fungi such as A. niger and A. flavus using agroindustrial residues as substract and evaluated the effect of these enzymes on cellulose pulp biobleaching process. Wheat bran was the best carbon source for xylanase production by A. niger and A. flavus. The production of xylanase was 18 and 21% higher on wheat bran when we compare the xylanase production with xylan. At 50°C, the xylanase of A. niger retained over 85% activity with 2 h of incubation, and A. flavus had a half-life of more than 75 minutes. At 55°C, the xylanase produced by A. niger showed more stable than from A. flavus showing a half-life of more than 45 minutes. The xylanase activity of A. niger and A. flavus were somehow protected in the presence of glycerol 5% when compared to the control (without additives). On the biobleaching assay it was observed that the xylanase from A. flavus was more effective in comparison to A. niger. The kappa efficiency corresponded to 36.32 and 25.93, respectively. That is important to emphasize that the cellulase activity was either analyzed and significant levels were not detected, which explain why the viscosity was not significantly modified.
Resumo:
The down-regulation of the tumor-suppressor gene RASSF1A has been shown to increase cell proliferation in several tumors. RASSF1A expression is regulated through epigenetic events involving the polycomb repressive complex 2 (PRC2); however, the molecular mechanisms modulating the recruitment of this epigenetic modifier to the RASSF1 locus remain largely unknown. Here, we identify and characterize ANRASSF1, an endogenous unspliced long noncoding RNA (lncRNA) that is transcribed from the opposite strand on the RASSF1 gene locus in several cell lines and tissues and binds PRC2. ANRASSF1 is transcribed through RNA polymerase II and is 5'-capped and polyadenylated; it exhibits nuclear localization and has a shorter half-life compared with other lncRNAs that bind PRC2. ANRASSF1 endogenous expression is higher in breast and prostate tumor cell lines compared with non-tumor, and an opposite pattern is observed for RASSF1A. ANRASSF1 ectopic overexpression reduces RASSF1A abundance and increases the proliferation of HeLa cells, whereas ANRASSF1 silencing causes the opposite effects. These changes in ANRASSF1 levels do not affect the RASSF1C isoform abundance. ANRASSF1 overexpression causes a marked increase in both PRC2 occupancy and histone H3K27me3 repressive marks, specifically at the RASSF1A promoter region. No effect of ANRASSF1 overexpression was detected on PRC2 occupancy and histone H3K27me3 at the promoter regions of RASSF1C and the four other neighboring genes, including two well-characterized tumor suppressor genes. Additionally, we demonstrated that ANRASSF1 forms an RNA/DNA hybrid and recruits PRC2 to the RASSF1A promoter. Together, these results demonstrate a novel mechanism of epigenetic repression of the RASSF1A tumor suppressor gene involving antisense unspliced lncRNA, in which ANRASSF1 selectively represses the expression of the RASSF1 isoform overlapping the antisense transcript in a location-specific manner. In a broader perspective, our findings suggest that other non-characterized unspliced intronic lncRNAs transcribed in the human genome might contribute to a location-specific epigenetic modulation of genes.
Resumo:
137Cs is an artificial radioactive isotope produced by 235U fission. This radionuclide has a high fission yield and a half-life of 30 years. It has been detected in the environment since 1945 and its principal contamination source has been nuclear tests in the atmosphere. There are other sources of 137Cs contamination in the environment, such as: release from nuclear and reprocessing plants, radioactive dumping and nuclear accidents (Chernobyl, for example). This paper presents an inventory of 137Cs on the Continental Shelf of São Paulo State, a region located between Cabo de Santa Marta Grande (Santa Catarina state) and Cabo Frio (Rio de Janeiro state). In this area, 9 cores were collected by the Instituto Oceanográfico da Universidade de São Paulo (São Paulo University Institute of Oceanography). The cores were sliced at every 2 cm; sub-samples were lyophilized, grinded and stored in plastic containers. 137Cs was determined by 661 keV photopeak using a gamma spectrometry detector (Ge hyperpure). The analysis was performed by efficiency and background in different counting times. 137Cs concentration activities varied from 0.3 to 3.6 Bq kg-1 with a mean value of 1.2±0.6 Bq kg-1. The inventory of 137Cs in this area was 13±7 Bq m-2. Values obtained are in agreement with the Southern Hemisphere, a region contaminated by atmospheric fallout due to past nuclear explosions.
Resumo:
[EN]Labile Fe(II) distributions were investigated in the Sub-Tropical South Atlantic and the Southern Ocean during the BONUS-GoodHope cruise from 34 to 57_ S (February? March 2008). Concentrations ranged from below the detection limit (0.009 nM) to values as high 5 as 0.125 nM. In the surface mixed layer, labile Fe(II) concentrations were always higher than the detection limit, with values higher than 0.060nM south of 47_ S, representing between 39% and 63% of dissolved Fe (DFe). Biological production was evidenced. At intermediate depth, local maxima were observed, with the highest values in the Sub-Tropical domain at around 200 m, and represented more than 70% of DFe. Remineralization processes were likely responsible for those sub-surface maxima. Below 1500 m, concentrations were close to or below the detection limit, except at two stations (at the vicinity of the Agulhas ridge and in the north of the Weddell Sea Gyre) where values remained as high as _0.030?0.050 nM. Hydrothermal or sediment inputs may provide Fe(II) to these deep waters. Fe(II) half life times (t1/2) at 4 _C were measured in the upper and deep waters and ranged from 2.9 to 11.3min, and from 10.0 to 72.3 min, respectively. Measured values compared quite well in the upper waters with theoretical values from two published models, but not in the deep waters. This may be due to the lack of knowledge for some parameters in the models and/or to organic complexation of Fe(II) that impact its oxidation rates. This study helped to considerably increase the Fe(II) data set in the Ocean and to better understand the Fe redox cycle.
Resumo:
The Clusterin (CLU) gene produces different forms of protein products which vary in their biological properties and distribution within the cell. Both the extra- and intracellular CLU forms regulate cell proliferation and apoptosis. Dis-regulation of CLU expression occurs in many cancer types, including prostate cancer. The role that CLU plays in tumorigenesis is still unclear. We found that CLU over-expression inhibited cell proliferation and induced apoptosis in prostate cancer cells. Here we show that depletion of CLU affects the growth of PC-3 prostate cancer cells. Following siRNA, all protein products quickly disappeared, inducing cell cycle progression and higher expression of specific proliferation markers (i.e. H3 mRNA, PCNA and cyclins A, B1 and D) as detected by RT-qPCR and Western blot. Quite surprisingly, we also found that the turnover of CLU protein is very rapid and tightly regulated by ubiquitin–proteasome mediated degradation. Inhibition of protein synthesis by cycloheximide showed that CLU half-life is less than 2 hours. All CLU protein products were found poly-ubiquitinated by co-immuniprecipitation. Proteasome inhibition by MG132 caused stabilization and accumulation of all CLU protein products, strongly inducing the nuclear form of CLU (nCLU) and committing cells to caspase-dependent death. In conclusion, proteasome inhibition may induce prostate cancer cell death through accumulation of nCLU, a potential tumour suppressor factor.
Resumo:
The aim of this work was to develop a way to synthesise potential 90Nb-radiopharmaceuticals. With a half-life of 14.6 h and a
Resumo:
Pharmaceuticals are useful tools to prevent and treat human and animal diseases. Following administration, a significant fraction of pharmaceuticals is excreted unaltered into faeces and urine and may enter the aquatic ecosystem and agricultural soil through irrigation with recycled water, constituting a significant source of emerging contaminants into the environment. Understanding major factors influencing their environmental fate is consequently needed to value the risk, reduce contamination, and set up bioremediation technologies. The antiviral drug Tamiflu (oseltamivir carboxylate, OC) has received recent attention due to the potential use as a first line defence against H5N1 and H1N1 influenza viruses. Research has shown that OC is not removed during conventional wastewater treatments, thus having the potential to enter surface water bodies. A series of laboratory experiments investigated the fate and the removal of OC in surface water systems in Italy and Japan and in a municipal wastewater treatment plant. A preliminary laboratory study investigated the persistence of the active antiviral drug in water samples from an irrigation canal in northern Italy (Canale Emiliano Romagnolo). After an initial rapid decrease, OC concentration slowly decreased during the remaining incubation period. Approximately 65% of the initial OC amount remained in water at the end of the 36-day incubation period. A negligible amount of OC was lost both from sterilized water and from sterilized water/sediment samples, suggesting a significant role of microbial degradation. Stimulating microbial processes by the addition of sediments resulted in reduced OC persistence. Presence of OC (1.5 μg mL-1) did not significantly affect the metabolic potential of the water microbial population, that was estimated by glyphosate and metolachlor mineralization. In contrast, OC caused an initial transient decrease in the size of the indigenous microbial population of water samples. A second laboratory study focused on basic processes governing the environmental fate of OC in surface water from two contrasting aquatic ecosystems of northern Italy, the River Po and the Venice Lagoon. Results of this study confirmed the potential of OC to persist in surface water. However, the addition of 5% of sediments resulted in rapid OC degradation. The estimated half-life of OC in water/sediment of the River Po was 15 days. After three weeks of incubation at 20 °C, more than 8% of 14C-OC evolved as 14CO2 from water/sediment samples of the River Po and Venice Lagoon. OC was moderately retained onto coarse sediments from the two sites. In water/sediment samples of the River Po and Venice Lagoon treated with 14C-OC, more than 30% of the 14C-residues remained water-extractable after three weeks of incubation. The low affinity of OC to sediments suggests that the presence of sediments would not reduce its bioavailability to microbial degradation. Another series of laboratory experiments investigated the fate and the removal of OC in two surface water ecosystems of Japan and in the municipal wastewater treatment plant of the city of Bologna, in Northern Italy. The persistence of OC in surface water ranged from non-detectable degradation to a half-life of 53 days. After 40 days, less than 3% of radiolabeled OC evolved as 14CO2. The presence of sediments (5%) led to a significant increase of OC degradation and of mineralization rates. A more intense mineralization was observed in samples of the wastewater treatment plant when applying a long incubation period (40 days). More precisely, 76% and 37% of the initial radioactivity applied as 14C-OC was recovered as 14CO2 from samples of the biological tank and effluent water, respectively. Two bacterial strains growing on OC as sole carbon source were isolated and used for its removal from synthetic medium and environmental samples, including surface water and wastewater. Inoculation of water and wastewater samples with the two OC-degrading strains showed that mineralization of OC was significantly higher in both inoculated water and wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis and quantitative PCR analysis showed that OC would not affect the microbial population of surface water and wastewater. The capacity of the ligninolytic fungus Phanerochaete chrysosporium to degrade a wide variety of environmentally persistent xenobiotics has been largely reported in literature. In a series of laboratory experiments, the efficiency of a formulation using P. chrysosporium was evaluated for the removal of selected pharmaceuticals from wastewater samples. Addition of the fungus to samples of the wastewater treatment plant of Bologna significantly increased (P < 0.05) the removal of OC and three antibiotics, erythromycin, sulfamethoxazole, and ciprofloxacin. Similar effects were also observed in effluent water. OC was the most persistent of the four pharmaceuticals. After 30 days of incubation, approximately two times more OC was removed in bioremediated samples than in controls. The highest removal efficiency of the formulation was observed with the antibiotic ciprofloxacin. The studies included environmental aspects of soil contamination with two emerging veterinary contaminants, such as doramectin and oxibendazole, wich are common parasitic treatments in cattle farms.