916 resultados para genetic variants
Studies of the genetic epidemiology of cardiovascular disease: focus on inflammatory candidate genes
Resumo:
Cardiovascular disease (CVD) is a complex disease with multifactorial aetiology. Both genetic and environmental factors contribute to the disease risk. The lifetime risk for CVD differs markedly between men and women, men being at increased risk. Inflammatory reaction contributes to the development of the disease by promoting atherosclerosis in artery walls. In the first part of this thesis, we identified several inflammatory related CVD risk factors associating with the amount of DNA from whole blood samples, indicating a potential source of bias if a genetic study selects the participants based on the available amount of DNA. In the following studies, this observation was taken into account by applying whole genome amplification to samples otherwise subjected to exclusion due to very low DNA yield. We continued by investigating the contribution of inflammatory genes to the risk for CVD separately in men and women, and looked for sex-genotype interaction. In the second part, we explored a new candidate gene and its role in the risk for CVD. Selenoprotein S (SEPS1) is a membrane protein residing in the endoplasmic reticulum where it participates in retro-translocation of unfolded proteins to cytosolic protein degradation. Previous studies have indicated that SEPS1 protects cells from oxidative stress and that variations in the gene are associated with circulating levels of inflammatory cytokines. In our study, we identified two variants in the SEPS1 gene, which associated with coronary heart disease and ischemic stroke in women. This is, to our knowledge, the first study suggesting a role of SEPS1 in the risk for CVD after extensively examining the variation within the gene region. In the third part of this thesis, we focused on a set of seven genes (angiotensin converting enzyme, angiotensin II receptor type I, C-reactive protein (CRP), and fibrinogen alpha-, beta-, and gamma-chains (FGA, FGB, FGG)) related to inflammatory cytokine interleukin 6 (IL6) and their association with the risk for CVD. We identified one variant in the IL6 gene conferring risk for CVD in men and a variant pair from IL6 and FGA genes associated with decreased risk. Moreover, we identified and confirmed an association between a rare variant in the CRP gene and lower CRP levels, and found two variants in the FGA and FGG genes associating with fibrinogen. The results from this third study suggest a role for the interleukin 6 pathway genes in the pathogenesis of CVD and warrant further studies in other populations. In addition to the IL6 -related genes, we describe in this thesis several sex-specific associations in other genes included in this study. The majority of the findings were evident only in women encouraging other studies of cardiovascular disease to include and analyse women separately from men.
Resumo:
Colorectal cancer (CRC) is the third most common cancer in Finland. Of all CRC tumors, 15% display microsatellite-instability (MSI) caused by defective cellular mismatch repair. Cells displaying MSI accumulate a high number of mutations genome-wide, especially in short repeat areas, microsatellites. When targeting genes essential for cell growth or death, MSI can promote tumorigenesis. In non-coding areas, microsatellite mutations are generally considered as passenger events. Since the discovery of MSI and its linkage to cancer, more that 200 genes have been investigated for a role in MSI tumorigenesis. Although various criteria have been suggested for MSI target gene identification, the challenge has been to distinguish driver mutations from passenger mutations. This study aimed to clarify these key issues in the research field of MSI cancer. Prior to this, background mutation rate in MSI cancer has not been studied in a large-scale. We investigated the background mutation rate in MSI CRC by analyzing the spectrum of microsatellite mutations in non-coding areas. First, semenogelin I was studied for a possible role in MSI carcinogenesis. The intronic T9 repeat of semenogelin I was frequently mutated but no evidence for selection during tumorigenesis was obtained. Second, a sequencing approach was utilized to evaluate the general background mutation rate in MSI CRC. Both intronic and intergenic repeats harbored extremely high mutation rates of ≤ 87% and intergenic repeats were more unstable than the intronic repeats. As mutation rates of presumably neutral microsatellites can be high in MSI CRC in the absence of apparent selection pressure, high mutation frequency alone is not sufficient evidence for identification of driver MSI target genes. Next, an unbiased approach was designed to identify the mutatome of MSI CRC. By combining expression array data and a database search we identified novel genes possibly related to MSI CRC carcinogenesis. One of the genes was studied further. In the functional analysis this gene was observed to cause an abnormal cancer-prone cellular phenotype, possibly through altered responses to DNA damage. In our recent study, smooth muscle myosin heavy chain 11 (MYH11) was identified as a novel MSI CRC gene. Additionally, MYH11 has a well established role in acute myeloid leukemia (AML) through an oncogenic fusion protein CBFB-MYH11. We investigated further the role of MYH11 in AML by sequencing. Three novel missense variants of MYH11 were identified. None of the variants were present in the population-based control material. One of the identified variants, V71A, lies in the N-terminal SH3-like domain of MYH11 of unknown function. The other two variants, K1059E and R1792Q are located in the coil-coiled myosin rod essential for the regulation and filament formation of MYH11. The variant K1059E lies in the close proximity of the K1044N that has been functionally assessed in our earlier work of CRC and has been reported to cause total loss of MYH11 protein regulation. As the functional significance of the three novel variants examined in this work remains unknown, future studies should clarify the further role of MYH11 in AML leukaemogenesis and in other malignancies.
Resumo:
We carried out a genome-wide association study in 296 individuals with male-pattern baldness (androgenetic alopecia) and 347 controls. We then investigated the 30 best SNPs in an independent replication sample and found highly significant association for five SNPs on chromosome 20p11 (rs2180439 combined P = 2.7 x 10(-15)). No interaction was detected with the X-chromosomal androgen receptor locus, suggesting that the 20p11 locus has a role in a yet-to-be-identified androgen-independent pathway.
Resumo:
Endometriosis has a genetic component, and significant linkage has been found to a region on chromosome 10q. Two candidate genes, EMX2 and PTEN, implicated in both endometriosis and endometrial cancer, lie on chromosome 10q. We hypothesized that variation in EMX2 and/or PTEN could contribute to the risk of endometriosis and may account for some of the linkage signal on 10q. We genotyped single nucleotide polymorphisms (SNPs) in a case-control design to evaluate association between endometriosis and common variations in these two genes. The genotyping and statistical analysis were based on samples collected from Australian volunteers. The cases were 768 unrelated women with surgically confirmed endometriosis selected from affected sister pair (ASP) families participating in the Australian Genes behind Endometriosis Study. The controls were 768 female participants in twin studies who, based on screening questions, did not have a diagnosis of endometriosis. Genotypes of 22 SNPs in the EMX2 gene and 15 SNPs in the PTEN gene were the main outcome measures. Statistical analysis provided measures of linkage disequilibrium and association. Permutation testing showed no globally significant association between any SNPs or haplotypes and endometriosis for either gene. It is unlikely that the EMX2 or PTEN gene variants investigated contribute to risk for initiation and/or development of endometriosis.
Resumo:
Syanobakteerit (sinilevät) ovat olleet Itämeressä koko nykymuotoisen Itämeren ajan, sillä paleolimnologiset todisteet niiden olemassaolosta Itämeren alueella ovat noin 7000 vuoden takaa. Syanobakteerien massaesiintymät eli kukinnat ovat kuitenkin sekä levinneet laajemmille alueille että tulleet voimakkaimmiksi viimeisten vuosikymmenien aikana. Tähän on osasyynä ihmisten aiheuttama kuormitus, joka rehevöittää Itämerta. Suomenlahti, jota tämä tutkimus käsittelee, on kärsinyt tästä rehevöitymiskehityksestä muita Itämeren altaita enemmän. Syanobakteerit muodostavat jokakesäisiä kukintoja Suomenlahdella - niin sen avomerialueilla kuin rannoillakin. Yleisimmät kukintoja muodostavat syanobakteerisuvut ovat Nodularia, Anabaena ja Aphanizomenon. Kukinnat aiheuttavat paitsi esteettistä haittaa myös terveydellisen riskitekijän. Niiden myrkyllisyys liitetään usein Nodularia-suvun tuottamaan nodulariini-maksamyrkkyyn. Itämeren Aphanizomenon-suvun on todettu olevan myrkytön. Vaikka Itämeren kukintoja aiheuttavista Nodularia- ja Aphanizomenon-syanobakteereista tiedetään varsin paljon, on molekyylimenetelmiin pohjautuva syanobakteeritutkimus ohittanut Itämeren Anabaena-suvun monelta osin. Tämän työn tarkoituksena oli syventää käsitystämme Itämeren Anabaena-syanobakteerista, sen mahdollisesta myrkyllisyydestä, geneettisestä monimuotoisuudesta ja fylogeneettisista sukulaisuussuhteista. Tässä työssä eristettiin 49 planktista Anabaena-kantaa, joista viisi tuottivat mikrokystiinejä. Tämä oli ensimmäinen yksiselitteinen todiste, että Itämeren Anabaena tuottaa maksamyrkyllisiä mikrokystiini-yhdisteitä. Jokainen eristetty myrkyllinen Anabaena-kanta tuotti useita mikrokystiini-variantteja. Lisäksi mikrokystiinejä löydettiin kukintanäytteistä, joissa oli myrkkyä syntetisoivia geenejä sisältäneitä Anabaena-syanobakteereita. Myrkkyjä löydettiin molempina tutkimusvuosina 2003 ja 2004. Myrkkyjen esiintyminen ei siten ollut vain yksittäinen ilmiö. Tässä työssä saimme viitteitä siitä, että maksamyrkyllinen Anabaena-syanobakteeri esiintyisi vähäsuolaisissa vesissä. Tämä riippuvuussuhde jää kuitenkin tulevien tutkimuksien selvitettäväksi. Tässä työssä havaittiin mikrokystiinisyntetaasi-geenien inaktivoituminen Itämeren Anabaena-kannassa ja kukintanäytteissä. Kuvasimme Anabaena-kannan mikrokystiinisyntetaasigeenien sisältä insertioita, jotka hyvin todennäköisesti inaktivoivat myrkyntuoton. Insertion sisältäneeltä kannalta löysimme kuitenkin kaikki mikrokystiinisyntetaasigeenit osoittaen, että geenien olemassaolo ei välttämättä varmista kannan mikrokystiinintuottoa. Mielenkiintoista oli se, että inaktivaation aiheuttavia insertioita löytyi kukintanäytteistä molemmilta tutkimusvuosilta. Vastaavia insertioita ei kuitenkaan löydetty makean veden Anabaena-kannoista tai järvinäytteistä. On yleistä, että syanobakteerikukinnoista löytyy usean syanobakteerisuvun edustajia. Myrkyllisiä sukuja tai lajeja ei voida kuitenkaan erottaa mikroskooppisesti myrkyttömistä. Käsillä olevassa tutkimuksessa kehitettiin molekyylimenetelmä, jolla on mahdollista määrittää kukinnan mahdollisesti maksamyrkylliset syanobakteerisuvut. Tätä menetelmää sovellettiin Itämeren kukintojen tutkimiseen. Itämeren pintavesistä ja ranta-alueiden pohjasta eristetyt Anabaena-kannat osoittautuivat geneettisesti monimuotoisiksi. Tämä Anabaena-syanobakteerien geneettinen monimuotoisuus vahvistettiin monistamalla geenejä suoraan kukintanäytteistä ilman kantojen eristystä. Makeiden vesien ja Itämeren Anabaena-kannat ovat geneettisesti hyvin samankaltaisia. Geneettisissä vertailuissa kävi kuitenkin ilmi, että pohjassa elävien Anabaena-kantojen geneettinen monimuotoisuus oli suurempaa kuin pintavesistä eristettyjen kantojen. Itämeren Anabaena-kantojen sekvenssit muodostivat omia ryhmiä sukupuun sisällä, jolloin on mahdollista, että nämä edustavat Itämeren omia Anabaena-ekotyyppejä. Tämä tutkimus oli ensimmäinen, jossa uusin molekyylimenetelmin systemaattisesti selvitettiin Itämeren Anabaena-syanobakteerin geneettistä populaatiorakennetta, fylogeniaa ja myrkyntuottoa. Tulevaisuudessa monitorointitutkimuksissa on otettava huomioon myös Itämeren Anabaena-syanobakteerin mahdollinen maksamyrkyntuotto – erityisesti vähäsuolaisemmilla rannikkovesillä.
Resumo:
Sustainable management of sea mullet (Mugil cephalus) fisheries needs to account for recent observations of regional-scale differentiation. Population genetic analysis is sought to assess the situation of this ecologically and economically important fish species in eastern Australian waters. Here, we report (i) new population genetic markers [single nucleotide polymorphisms (SNPs) and potential microsatellites], (ii) first estimates of spatial genetic differentiation and (iii) prospective power tests for designing more comprehensive studies. Six DNA samples from three sampling regions (North Queensland, South Queensland and central New South Wales) on the eastern coast of Australia were used to prepare restriction site associated DNA (RAD) tag libraries from genomic DNA digested with EcoRI and MseI. A pooled sample of regional RAD tag libraries was sequenced using the Roche GS-FLX Titanium platform. A total of 172837 raw reads (17.4Mbp) were retrieved, 95500 of which were used to discover 1267 SNPs and 1417 microsatellites. A subset of 161 SNPs was validated based on 63 additional DNA samples genotyped using the Sequenom MassArray (iPLEX Gold chemistry). Altogether 92 SNPs (57%) were confirmed, with 40% of these marking fixed variants between northern and southern sampling regions. Our preliminary findings indicate a multispecies fishery stock of M. cephalus in eastern Australian waters, but suggest that strong genetic differentiation occurs north of major fishing grounds. Low potential differentiation within major fishing grounds (e.g. FST=0.0025) can be resolved with a likely power 67% by using standard sample sizes of 50 and validated subsets of available markers.
Resumo:
Grain protein composition determines quality traits, such as value for food, feedstock, and biomaterials uses. The major storage proteins in sorghum are the prolamins, known as kafirins. Located primarily on the periphery of the protein bodies surrounding starch, cysteine-rich beta- and gamma-kafirins may limit enzymatic access to internally positioned alpha-kafirins and starch. An integrated approach was used to characterize sorghum with allelic variation at the kafirin loci to determine the effects of this genetic diversity on protein expression. Reversed-phase high performance liquid chromatography and lab-on-a-chip analysis showed reductions in alcohol-soluble protein in beta-kafirin null lines. Gel-based separation and liquid chromatography-tandem mass spectrometry identified a range of redox active proteins affecting storage protein biochemistry. Thioredoxin, involved in the processing of proteins at germination, has reported impacts on grain digestibility and was differentially expressed across genotypes. Thus, redox states of endosperm proteins, of which kafirins are a subset, could affect quality traits in addition to the expression of proteins.
Resumo:
In this thesis, the genetic variation of human populations from the Baltic Sea region was studied in order to elucidate population history as well as evolutionary adaptation in this region. The study provided novel understanding of how the complex population level processes of migration, genetic drift, and natural selection have shaped genetic variation in North European populations. Results from genome-wide, mitochondrial DNA and Y-chromosomal analyses suggested that the genetic background of the populations of the Baltic Sea region lies predominantly in Continental Europe, which is consistent with earlier studies and archaeological evidence. The late settlement of Fennoscandia after the Ice Age and the subsequent small population size have led to pronounced genetic drift, especially in Finland and Karelia but also in Sweden, evident especially in genome-wide and Y-chromosomal analyses. Consequently, these populations show striking genetic differentiation, as opposed to much more homogeneous pattern of variation in Central European populations. Additionally, the eastern side of the Baltic Sea was observed to have experienced eastern influence in the genome-wide data as well as in mitochondrial DNA and Y-chromosomal variation – consistent with linguistic connections. However, Slavic influence in the Baltic Sea populations appears minor on genetic level. While the genetic diversity of the Finnish population overall was low, genome-wide and Y-chromosomal results showed pronounced regional differences. The genetic distance between Western and Eastern Finland was larger than for many geographically distant population pairs, and provinces also showed genetic differences. This is probably mainly due to the late settlement of Eastern Finland and local isolation, although differences in ancestral migration waves may contribute to this, too. In contrast, mitochondrial DNA and Y-chromosomal analyses of the contemporary Swedish population revealed a much less pronounced population structure and a fusion of the traces of ancient admixture, genetic drift, and recent immigration. Genome-wide datasets also provide a resource for studying the adaptive evolution of human populations. This study revealed tens of loci with strong signs of recent positive selection in Northern Europe. These results provide interesting targets for future research on evolutionary adaptation, and may be important for understanding the background of disease-causing variants in human populations.
Resumo:
Acute anterior uveitis (AAU) involves inflammation of the iris and ciliary body of the eye. It occurs both in isolation and as a complication of ankylosing spondylitis (AS). It is strongly associated with HLA-B*27, but previous studies have suggested that further genetic factors may confer additional risk. We sought to investigate this using the Illumina Exomechip microarray, to compare 1504 cases with AS and AAU, 1805 with AS but no AAU and 21 133 healthy controls. We also used a heterogeneity test to test the differences in effect size between AS with AAU and AS without AAU. In the analysis comparing AS+AAU+ cases versus controls, HLA-B*27 and HLA-A*02:01 were significantly associated with the presence of AAU (P<10−300 and P=6 × 10−8, respectively). Secondary independent association with PSORS1C3 (P=4.7 × 10−5) and TAP2 (P=1.1 × 10−5) were observed in the major histocompatibility complex. There was a new suggestive association with a low-frequency variant at zinc-finger protein 154 in the AS without AAU versus control analysis (zinc-finger protein 154 (ZNF154), P=2.2 × 10−6). Heterogeneity testing showed that rs30187 in ERAP1 has a larger effect on AAU compared with that in AS alone. These findings also suggest that variants in ERAP1 have a differential impact on the risk of AAU when compared with AS, and hence the genetic risk for AAU differs from AS.
Resumo:
Evolutionary genetics incorporates traditional population genetics and studies of the origins of genetic variation by mutation and recombination, and the molecular evolution of genomes. Among the primary forces that have potential to affect the genetic variation within and among populations, including those that may lead to adaptation and speciation, are genetic drift, gene flow, mutations and natural selection. The main challenges in knowing the genetic basis of evolutionary changes is to distinguish the adaptive selection forces that cause existent DNA sequence variants and also to identify the nucleotide differences responsible for the observed phenotypic variation. To understand the effects of various forces, interpretation of gene sequence variation has been the principal basis of many evolutionary genetic studies. The main aim of this thesis was to assess different forms of teleost gene sequence polymorphisms in evolutionary genetic studies of Atlantic salmon (Salmo salar) and other species. Firstly, the level of Darwinian adaptive evolution affected coding regions of the growth hormone (GH) gene during the teleost evolution was investigated based on the sequence data existing in public databases. Secondly, a target gene approach was used to identify within population variation in the growth hormone 1 (GH1) gene in salmon. Then, a new strategy for single nucleotide polymorphisms (SNPs) discovery in salmonid fishes was introduced, and, finally, the usefulness of a limited number of SNP markers as molecular tools in several applications of population genetics in Atlantic salmon was assessed. This thesis showed that the gene sequences in databases can be utilized to perform comparative studies of molecular evolution, and some putative evidence of the existence of Darwinian selection during the teleost GH evolution was presented. In addition, existent sequence data was exploited to investigate GH1 gene variation within Atlantic salmon populations throughout its range. Purifying selection is suggested to be the predominant evolutionary force controlling the genetic variation of this gene in salmon, and some support for gene flow between continents was also observed. The novel approach to SNP discovery in species with duplicated genome fragments introduced here proved to be an effective method, and this may have several applications in evolutionary genetics with different species - e.g. when developing gene-targeted markers to investigate quantitative genetic variation. The thesis also demonstrated that only a few SNPs performed highly similar signals in some of the population genetic analyses when compared with the microsatellite markers. This may have useful applications when estimating genetic diversity in genes having a potential role in ecological and conservation issues, or when using hard biological samples in genetic studies as SNPs can be applied with relatively highly degraded DNA.
Resumo:
Background Located in the Pacific Ocean between Australia and New Zealand, the unique population isolate of Norfolk Island has been shown to exhibit increased prevalence of metabolic disorders (type-2 diabetes, cardiovascular disease) compared to mainland Australia. We investigated this well-established genetic isolate, utilising its unique genomic structure to increase the ability to detect related genetic markers. A pedigree-based genome-wide association study of 16 routinely collected blood-based clinical traits in 382 Norfolk Island individuals was performed. Results A striking association peak was located at chromosome 2q37.1 for both total bilirubin and direct bilirubin, with 29 SNPs reaching statistical significance (P < 1.84 × 10−7). Strong linkage disequilibrium was observed across a 200 kb region spanning the UDP-glucuronosyltransferase family, including UGT1A1, an enzyme known to metabolise bilirubin. Given the epidemiological literature suggesting negative association between CVD-risk and serum bilirubin we further explored potential associations using stepwise multivariate regression, revealing significant association between direct bilirubin concentration and type-2 diabetes risk. In the Norfolk Island cohort increased direct bilirubin was associated with a 28 % reduction in type-2 diabetes risk (OR: 0.72, 95 % CI: 0.57-0.91, P = 0.005). When adjusted for genotypic effects the overall model was validated, with the adjusted model predicting a 30 % reduction in type-2 diabetes risk with increasing direct bilirubin concentrations (OR: 0.70, 95 % CI: 0.53-0.89, P = 0.0001). Conclusions In summary, a pedigree-based GWAS of blood-based clinical traits in the Norfolk Island population has identified variants within the UDPGT family directly associated with serum bilirubin levels, which is in turn implicated with reduced risk of developing type-2 diabetes within this population.
Resumo:
Hypokinesia, rigidity, tremor, and postural instability are the cardinal symptoms of Parkinson s disease (PD). Since these symptoms are not specific to PD the diagnosis may be uncertain in early PD. Etiology and pathogenesis of PD remain unclear. There is no neuroprotective therapy. Genetic findings are expected to reveal metabolic routes in PD pathogenesis and thereby eventually lead to therapeutic innovations. In this thesis, we first aimed to study the usefulness and accuracy of 123I-b-CIT SPECT in the diagnosis of PD in a consecutive clinic-based material including various movement disorders. We subsequently a genetic project to identify genetic risk factors for sporadic PD using a candidate gene approach in a case-control setting including 147 sporadic PD patients and 137 spouse controls. Dopamine transporter imaging by 123I-b-CIT SPECT could distinguish PD from essential tremor, drug-induced parkinsonism, dystonia and psychogenic parkinsonism. However, b-CIT uptake in Parkinson plus syndromes (PSP and multiple system atrophy) and dementia with Lewy bodies was not significantly different from PD. 123I-b-CIT SPECT could not reliably differentiate PD from vascular parkinsonism. 123I-b-CIT SPECT was 100% sensitive and specific in the diagnosis of PD in patients younger than 55 years but less specific in older patients, due to differential distribution of the above conditions in the younger and older age groups. 123I-b-CIT SPECT correlated with symptoms and detected bilateral nigrostriatal defect in patients whose PD was still in unilateral stage. Thus, in addition to as a differential diagnostic aid, 123I-b-CIT SPECT may be used to detect PD early, even pre-symptomatically in at-risk individuals. 123I-b-CIT SPECT was used to aid in the collection of patients to the genetic studies. In the genetic part of this thesis we found an association between PD and a polymorphic CAG-repeat in POLG1 gene encoding the catalytic subunit of mitochondrial polymerase gamma. The CAG-repeat encodes a polyglutamine tract (polyQ), the two most common lengths of which are 10Q (86-90%) and 11Q. In our Finnish material, the rarer non-10Q or non-11Q length variants (6Q-9Q, 12Q-14Q, 4R+9Q) were more frequent in patients than in spouse controls (10% vs. 3.5 %, p=0.003), or population controls (p=0.001). Therefore, we performed a replication study in 652 North American PD patients and 292 controls. Non-10/11Q alleles were more common in the US PD patients compared to the controls but the difference did not reach statistical significance (p=0.07). This larger data suggested our original definition of variant length allele might need reconsideration. Most previous studies on phenotypic effects of POLG1 polyQ have defined 10Q as the only normal allele. Non-10Q alleles were significantly more common in patients compared to the controls (17.3% vs. 12.3 %, p= 0.005). This association between non-10Q length variants and PD remained significant when compared to a larger set of 1541 literature controls (p=0.00005). In conclusion, POLG1 polyQ alleles other than 10Q may predispose to PD. We did not find association between PD and parkin or DJ-1, genes underlying autosomal recessive parkinsonism. The functional Val158Met polymorphism, which affects the catalytic effect of COMT enzyme, and another coding polymorphism in COMT were not associated with PD in our patient material. The APOE e2/3/4 polymorphism modifies risk for Alzheimer s disease and prognosis of for example brain trauma. APOE promoter and enhancer polymorphisms 219G/T and +113G/C, and APOE e3 haplotypes, have also been shown to modify the risk of Alzheimer s disease but not reported in PD. No association was found between PD and APOE e2/3/4 polymorphism, the promoter or enhancer polymorphisms, or the e3 haplotypes.
Resumo:
Migraine is the common cause of chronic episodic headache, affecting 12%-15% of the Caucasian population (41 million Europeans and some half a million Finns), and causes considerable loss of quality of life to its sufferers, as well as being linked to increased risk for a wide range of conditions, from depression to stroke. Migraine is the 19th most severe disease in terms of disability-adjusted life years, and 9th among women. It is characterized by attacks of headache accompanied by sensitivity to external stimuli lasting 4-72 hours, and in a third of cases by neurological aura symptoms, such as loss of vision, speech or muscle function. The underlying pathophysiology, including what triggers migraine attacks and why they occur in the first place, is largely unknown. The aim of this study was to identify genetic factors associated with the hereditary susceptibility to migraine, in order to gain a better understanding of migraine mechanisms. In this thesis, we report the results of genetic linkage and association analyses on a Finnish migraine patient collection as well as migraineurs from Australia, Denmark, Germany, Iceland and the Netherlands. Altogether we studied genetic information of nearly 7,000 migraine patients and over 50,000 population-matched controls. We also developed a new migraine analysis method called the trait component analysis, which is based on individual patient responses instead of the clinical diagnosis. Using this method, we detected a number of new genetic loci for migraine, including on chromosome 17p13 (HLOD 4.65) and 10q22-q23 (female-specific HLOD 7.68) with significant evidence of linkage, along with five other loci (2p12, 8q12, 4q28-q31, 18q12-q22, and Xp22) detected with suggestive evidence of linkage. The 10q22-q23 locus was the first genetic finding in migraine to show linkage to the same locus and markers in multiple populations, with consistent detection in six different scans. Traditionally, ion channels have been thought to play a role in migraine susceptibility, but we were able to exclude any significant role for common variants in a candidate gene study of 155 ion transport genes. This was followed up by the first genome-wide association study in migraine, conducted on 2,748 migraine patients and 10,747 matched controls followed by a replication in 3,209 patients and 40,062 controls. In this study, we found interesting results with genome-wide significance, providing targets for future genetic and functional studies. Overall, we found several promising genetic loci for migraine providing a promising base for future studies in migraine.
Resumo:
Most of the diseases affecting public health, like hypertension, are multifactorial by etiology. Hypertension is influenced by genetic, life style and environmental factors. Estimation of the influence of genes to the risk of essential hypertension varies from 30 to 50%. It is plausible that in most of the cases susceptibility to hypertension is determined by the action of more than one gene. Although the exact molecular mechanism underlying essential hypertension remains obscure, several monogenic forms of hypertension have been identified. Since common genetic variations may predict, not only to susceptibility to hypertension, but also response to antihypertensive drug therapy, pharmacogenetic approaches may provide useful markers in finding relations between candidate genes and phenotypes of hypertension. The aim of this study was to identify genetic mutations and polymorphisms contributing to human hypertension, and examine their relationships to intermediate phenotypes of hypertension, such as blood pressure (BP) responses to antihypertensive drugs or biochemical laboratory values. Two groups of patients were investigated in the present study. The first group was collected from the database of patients investigated in the Hypertension Outpatient Ward, Helsinki University Central Hospital, and consisted of 399 subjects considered to have essential hypertension. Frequncies of the mutant or variant alleles were compared with those in two reference groups, healthy blood donors (n = 301) and normotensive males (n = 175). The second group of subjects with hypertension was collected prospectively. The study subjects (n=313) underwent a protocol lasting eight months, including four one-month drug treatment periods with antihypertensive medications (thiazide diuretic, β-blocker, calcium channel antagonist, and an angiotensin II receptor antagonist). BP responses and laboratory values were related to polymorphims of several candidate genes of the renin-angiotensin system (RAS). In addition, two patients with typical features of Liddle’s syndrome were screened for mutations in kidney epithelial sodium channel (ENaC) subunits. Two novel mutations causing Liddle’s syndrome were identified. The first mutation identified located in the beta-subunit of ENaC and the second mutation found located in the gamma-subunit, constituting the first identified Liddle mutation locating in the extracellular domain. This mutation showed 2-fold increase in channel activity in vitro. Three gene variants, of which two are novel, were identified in ENaC subunits. The prevalence of the variants was three times higher in hypertensive patients (9%) than in reference groups (3%). The variant carriers had increased daily urinary potassium excretion rate in relation to their renin levels compared with controls suggesting increased ENaC activity, although in vitro they did not show increased channel activity. Of the common polymorphisms of the RAS studied, angiotensin II receptor type I (AGTR1) 1166 A/C polymorphism was associated with modest changes in RAS activity. Thus, patients homozygous for the C allele tended to have increased aldosterone and decreased renin levels. In vitro functional studies using transfected HEK293 cells provided additional evidence that the AGTR1 1166 C allele may be associated with increased expression of the AGTR1. Common polymorphisms of the alpha-adducin and the RAS genes did not significantly predict BP responses to one-month monotherapies with hydroclorothiazide, bisoprolol, amlodipin, or losartan. In conclusion, two novel mutations of ENaC subunits causing Liddle’s syndrome were identified. In addition, three common ENaC polymorphisms were shown to be associated with occurrence of essential hypertension, but their exact functional and clinical consequences remain to be explored. The AGTR1 1166 C allele may modify the endocrine phenotype of hypertensive patients, when present in homozygous form. Certain widely studied polymorphisms of the ACE, angiotensinogen, AGTR1 and alpha-adducin genes did not significantly affect responses to a thiazide, β-blocker, calcium channel antagonist, and angiotensin II receptor antagonist.
Resumo:
Crohn s disease (CD) and ulcerative colitis (UC), collectively known as inflammatory bowel disease (IBD), are characterised by chronic inflammation of the gastrointestinal tract. IBD prevalence in Finland is approximately 3-4 per 1000 inhabitants with a peak incidence in adolescence. The symptoms of IBD include diarrhoea, abdominal pain, fever, and weight loss. The precise aetiology of IBD is unknown but interplay of environmental risk factors and immunologic changes trigger the disease in a genetically susceptible individual. Twin and family studies have provided strong evidence for genetic factors in IBD susceptibility, and genetic factors may be more prominent in CD than UC. The first CD susceptibility gene was identified in 2001. Three common mutations R702W, G908R, and 1007fs of the CARD15/NOD2 gene are shown to associate independently with CD but the magnitude of association varies between different populations. The present study aimed at identifying mutations and genetic variations in IBD susceptibility and candidate genes. In addition, correlation to phenotype was also assessed. One of the main objectives of this study was to evaluate the role of CARD15 in a Finnish CD cohort. 271 CD patients were studied for the three common mutations and the results showed a lower mutation frequency than in other Caucasian populations. Only 16% of the patients carried one of the three mutations. Ileal location as well as stricturing and penetrating behaviour of the disease were associated with occurrence of the mutations. The whole protein coding region of CARD15 was screened for possible Finnish founder mutations. In addition to several sequence variants, five novel mutations (R38M, W355X, P727L, W907R, and R1019X) were identified in five patients. Functional consequences of these novel variants were studied in vitro, and these studies demonstrated a profound impairment of MDP response. Investigation of CARD15 mutation frequency in healthy people across three continents showed a large geographic fluctuation. No simple correlation between mutation frequency and disease incidence was seen in populations studied. The occurrence of double mutant carriers in healthy controls suggested that the penetrance of risk alleles is low. Other main objectives aimed at identifying other genetic variations that are involved in the susceptibility to IBD. We investigated the most plausible IBD candidate genes including TRAF6, SLC22A4, SLC22A5, DLG5, TLR4, TNFRSF1A, ABCB1/MDR1, IL23R, and ATG16L1. The marker for a chromosome 5 risk haplotype and the rare HLA-DRB1*0103 allele were also studied. The study cohort consisted of 699 IBD patients (240 CD and 459 UC), of which 23% had a first-degree relative with IBD. Of the several candidate genes studied, IL23R was associated with CD susceptibility, and TNFRSF1A as well as the HLA-DRB1*0103 allele with UC susceptibility. IL23R variants also showed association with the stricturing phenotype and longer disease duration in CD patients. In addition, TNFRSF1A variants were more common among familial UC and ileocolonic CD. In conclusion, the common CARD15 mutations were shown to account for 16% of CD cases in Finland. Novel CARD15 variants identified in the present study are most likely disease-causing mutations, as judged by the results of in vitro studies. The present study also confirms the IL23R association with CD susceptibility and, in addition, TNFRSF1A and HLA-DRB1*0103 allele association with UC of specific clinical phenotypes.