978 resultados para fishing vessel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study on the manoeuvrability of a riverine support patrol vessel is made to derive a mathematical model and simulate maneuvers with this ship. The vessel is mainly characterized by both its wide-beam and the unconventional propulsion system, that is, a pump-jet type azimuthal propulsion. By processing experimental data and the ship characteristics with diverse formulae to find the proper hydrodynamic coefficients and propulsion forces, a system of three differential equations is completed and tuned to carry out simulations of the turning test. The simulation is able to accept variable speed, jet angle and water depth as input parameters and its output consists of time series of the state variables and a plot of the simulated path and heading of the ship during the maneuver. Thanks to the data of full-scale trials previously performed with the studied vessel, a process of validation was made, which shows a good fit between simulated and full-scale experimental results, especially on the turning diameter

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methodology and results of full scale maneuvering trials for Riverine Support Patrol Vessel “RSPV”, built by COTECMAR for the Colombian Navy are presented. !is ship is equipped with a “Pump – Jet” propulsion system and the hull corresponds to a wide-hull with a high Beam – Draft ratio (B/T=9.5). Tests were based on the results of simulation of turning diameters obtained from TRIBON M3© design software, applying techniques of Design of Experiments “DOE”, to rationalize the number of runs in di"erent conditions of water depth, ship speed, and rudder angle. Results validate the excellent performance of this class of ship and show that turning diameter and other maneuvering characteristics improve with decreasing water depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a fully automatic simultaneous lung vessel and airway enhancement filter. The approach consists of a Frangi-based multiscale vessel enhancement filtering specifically designed for lung vessel and airway detection, where arteries and veins have high contrast with respect to the lung parenchyma, and airway walls are hollow tubular structures with a non negative response using the classical Frangi's filter. The features extracted from the Hessian matrix are used to detect centerlines and approximate walls of airways, decreasing the filter response in those areas by applying a penalty function to the vesselness measure. We validate the segmentation method in 20 CT scans with different pathological states within the VESSEL12 challenge framework. Results indicate that our approach obtains good results, decreasing the number of false positives in airway walls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intact stability of five small Spanish fishing vessels with ages between 3 and 8 years old which sunk in stability related accidents between 2004 and 2007 is compared to the stability of the fishing vessels which were retired from service to build those. The seakeeping performance of both sets of vessels is also compared. The differences found between the results obtained by the two methods have been analyzed. The suitability of seakeeping methods to assess stability performance is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays increasing fuel prices and upcoming pollutant emission regulations are becoming a growing concern for the shipping industry worldwide. While fuel prices will keep rising in future years, the new International Convention for the Prevention of Pollution from Ships (MARPOL) and Sulphur Emissions Control Areas (SECA) regulations will forbid ships to use heavy fuel oils at certain situations. To fulfil with these regulations, the next step in the marine shipping business will comprise the use of cleaner fuels on board as well as developing new propulsion concept. In this work a new conceptual marine propulsion system is developed, based on the integration of diesel generators with fuel cells in a 2850 metric tonne of deadweight platform supply vessel. The efficiency of the two 250 kW methanol-fed Solid Oxide Fuel Cell (SOFC) system installed on board combined with the hydro dynamically optimized design of the hull of the ship will allow the ship to successfully operate at certain modes of operation while notably reduce the pollutant emissions to the atmosphere. Besides the cogeneration heat obtained from the fuel cell system will be used to answer different heating needs on board the vessel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buque para el apoyo de instalaciones offshore, ya sea como suministro o para desempeñar un papel más específico como el remolque y posicionamiento de plataformas o artefactos marinos. Se trata de un buque AHTS con un tiro a punto fijo de 250 toneladas, 4.500 toneladas de peso muerto, capacidad de acomodación para 45 personas y propulsión diésel con dos hélices de paso controlable. Cuenta con una capacidad de cubierta de 750 m2, una grúa principal de 100 toneladas y sistema de posicionamiento dinámico DYNPOS-AUTRO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The In Vessel Viewing System (IVVS) will be one of the essential machine diagnostic systems at ITER to provide information about the status of in-vessel and plasma facing components and to evaluate the dust inside the Vacuum Vessel. The current design consists of six scanning probes and their deployment systems, which are placed in dedicated ports at the divertor level. These units are located in resident guiding tubes 10 m long, which allow the IVVS probes to go from their storage location to the scanning position by means of a simple straight translation. Moreover, each resident tube is supported inside the corresponding Vacuum Vessel and Cryostat port extensions, which are part of the primary confinement barrier. As the Vacuum Vessel and the Cryostat will move with respect to each other during operation (especially during baking) and during incidents and accidents (disruptions, vertical displacement events, seismic events), the structural integrity of the resident tube and the surrounding vacuum boundaries would be compromised if the required flexibility and supports are not appropriately assured. This paper focuses on the integration of the present design of the IVVS into the Vacuum Vessel and Cryostat environment. It presents the adopted strategy to withstand all the main interfacing loads without damaging the confinement barriers and the corresponding analysis supporting it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique is described for displaying distinct tissue layers of large blood vessel walls as well as measuring their mechanical strain. The technique is based on deuterium double-quantum-filtered (DQF) spectroscopic imaging. The effectiveness of the double-quantum filtration in suppressing the signal of bulk water is demonstrated on a phantom consisting of rat tail tendon fibers. Only intrafibrillar water is displayed, excluding all other signals of water molecules that reorient isotropically. One- and two-dimensional spectroscopic imaging of bovine aorta and coronary arteries show the characteristic DQF spectrum of each of the tissue layers. This property is used to obtain separate images of the outer layer, the tunica adventitia, or the intermediate layer, the tunica media, or both. To visualize the effect of elongation, the average residual quadrupole splitting <Δνq> is calculated for each pixel. Two-dimensional deuterium quadrupolar splitting images are obtained for a fully relaxed and a 55% elongated sample of bovine coronary artery. These images indicate that the strong effect of strain is associated with water molecules in the tunica adventitia whereas the DQF NMR signal of water in the tunica media is apparently strain-insensitive. After appropriate calibration, these average quadrupolar splitting images can be interpreted as strain maps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical link between hemostatic factors and atherosclerosis has been inferred from a variety of indirect observations, including the expression of procoagulant and fibrinolytic factors within atherosclerotic vessels, the presence of fibrin in intimal lesions, and the cellular infiltration of mural thrombi leading to their incorporation into developing plaques. To directly examine the role of the key fibrinolytic factor, plasminogen, in atherogenesis, plasminogen-deficient mice were crossed to hypercholesterolemic, apolipoprotein E-deficient mice predisposed to atherosclerosis. We report that the loss of plasminogen greatly accelerates the formation of intimal lesions in apolipoprotein E-deficient animals, whereas plasminogen deficiency alone does not cause appreciable atherosclerosis. These studies provide direct evidence that circulating hemostatic factors strongly influence vessel wall disease in the context of a disorder in lipid metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blood vessel elasticity is important to physiology and clinical problems involving surgery, angioplasty, tissue remodeling, and tissue engineering. Nonlinearity in blood vessel elasticity in vivo is important to the formation of solitons in arterial pulse waves. It is well known that the stress–strain relationship of the blood vessel is nonlinear in general, but a controversy exists on how nonlinear it is in the physiological range. Another controversy is whether the vessel wall is biaxially isotropic. New data on canine aorta were obtained from a biaxial testing machine over a large range of finite strains referred to the zero-stress state. A new pseudo strain energy function is used to examine these questions critically. The stress–strain relationship derived from this function represents the sum of a linear stress–strain relationship and a definitely nonlinear relationship. This relationship fits the experimental data very well. With this strain energy function, we can define a parameter called the degree of nonlinearity, which represents the fraction of the nonlinear strain energy in the total strain energy per unit volume. We found that for the canine aorta, the degree of nonlinearity varies from 5% to 30%, depending on the magnitude of the strains in the physiological range. In the case of canine pulmonary artery in the arch region, Debes and Fung [Debes, J. C. & Fung, Y. C.(1995) Am. J. Physiol. 269, H433–H442] have shown that the linear regime of the stress–strain relationship extends from the zero-stress state to the homeostatic state and beyond. Both vessels, however, are anisotropic in both the linear and nonlinear regimes.