842 resultados para ecosystem services


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystemsmarshes, mangroves, and seagrassesthat may be lost with habitat destruction (conversion). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this blue carbon can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.151.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 319% of those from deforestation globally, and result in economic damages of $US 642 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Funded by Biodiversity and Ecosystem Services in a Changing Climate Wenner-Gren Foundation Swedish Research Council The Royal Swedish Academy of Sciences Stiftelsen Anna-Greta Holger Crafoords Fund The Crafoord Foundation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Funded by Biodiversity and Ecosystem Services in a Changing Climate Wenner-Gren Foundation Swedish Research Council The Royal Swedish Academy of Sciences Stiftelsen Anna-Greta Holger Crafoords Fund The Crafoord Foundation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acknowledgements: We would like to thank Hanna Bensch and Hannes Weise for assistance with the collection of samples in the field. This work was supported by the Biodiversity and Ecosystem Services in a Changing Climate (BECC; a joint Lund-Gothenburg University initiative), the Swedish Research Council (EIS, BH), the Crafoord Foundation (EIS, BH), the Swedish Royal Society (EIS), Gyllenstiernska Krapperupstiftelsen (EIS), the Wenner-Gren Foundations (postdoctoral stipend to RYD), EU FP7 (Marie Curie International Incoming Fellowship to RYD), the Kungliga Fysiografiska Sllskapet i Lund (MW) and the Helge Ax:son Johnson Stiftelse (MW). B.H. and E.I.S. conceived of the study. L.L. developed the hypotheses to be tested. L.L. and R.D. collected the field data and samples. All six authors contributed to planning RNA-seq analyses. P.C. and L.L. analysed the data. L.L. wrote the manuscript, which all six authors edited.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Funded by Biodiversity and Ecosystem Services in a Changing Climate Wenner-Gren Foundation Swedish Research Council The Royal Swedish Academy of Sciences Stiftelsen Anna-Greta Holger Crafoords Fund The Crafoord Foundation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

<p>Wetland ecosystems provide many valuable ecosystem services, including carbon (C) storage and improvement of water quality. Yet, restored and managed wetlands are not frequently evaluated for their capacity to function in order to deliver on these values. Specific restoration or management practices designed to meet one set of criteria may yield unrecognized biogeochemical costs or co-benefits. The goal of this dissertation is to improve scientific understanding of how wetland restoration practices and waterfowl habitat management affect critical wetland biogeochemical processes related to greenhouse gas emissions and nutrient cycling. I met this goal through field and laboratory research experiments in which I tested for relationships between management factors and the biogeochemical responses of wetland soil, water, plants and trace gas emissions. Specifically, I quantified: (1) the effect of organic matter amendments on the carbon balance of a restored wetland; (2) the effectiveness of two static chamber designs in measuring methane (CH4) emissions from wetlands; (3) the impact of waterfowl herbivory on the oxygen-sensitive processes of methane emission and coupled nitrification-denitrification; and (4) nitrogen (N) exports caused by prescribed draw down of a waterfowl impoundment.</p><p>The potency of CH4 emissions from wetlands raises the concern that widespread restoration and/or creation of freshwater wetlands may present a radiative forcing hazard. Yet data on greenhouse gas emissions from restored wetlands are sparse and there has been little investigation into the greenhouse gas effects of amending wetland soils with organic matter, a recent practice used to improve function of mitigation wetlands in the Eastern United States. I measured trace gas emissions across an organic matter gradient at a restored wetland in the coastal plain of Virginia to test the hypothesis that added C substrate would increase the emission of CH4. I found soils heavily loaded with organic matter emitted significantly more carbon dioxide than those that have received little or no organic matter. CH4 emissions from the wetland were low compared to reference wetlands and contrary to my hypothesis, showed no relationship with the loading rate of added organic matter or total soil C. The addition of moderate amounts of organic matter (< 11.2 kg m-2) to the wetland did not greatly increase greenhouse gas emissions, while the addition of high amounts produced additional carbon dioxide, but not CH4. </p><p>I found that the static chambers I used for sampling CH4 in wetlands were highly sensitive to soil disturbance. Temporary compression around chambers during sampling inflated the initial chamber CH4 headspace concentration and/or lead to generation of nonlinear, unreliable flux estimates that had to be discarded. I tested an often-used rubber-gasket sealed static chamber against a water-filled-gutter seal chamber I designed that could be set up and sampled from a distance of 2 m with a remote rod sampling system to reduce soil disturbance. Compared to the conventional design, the remotely-sampled static chambers reduced the chance of detecting inflated initial CH4 concentrations from 66 to 6%, and nearly doubled the proportion of robust linear regressions from 45 to 86%. The new system I developed allows for more accurate and reliable CH4 sampling without costly boardwalk construction. </p><p>I explored the relationship between CH4 emissions and aquatic herbivores, which are recognized for imposing top-down control on the structure of wetland ecosystems. The biogeochemical consequences of herbivore-driven disruption of plant growth, and in turn, mediated oxygen transport into wetland sediments, were not previously known. Two growing seasons of herbivore exclusion experiments in a major waterfowl overwintering wetland in the Southeastern U.S. demonstrate that waterfowl herbivory had a strong impact on the oxygen-sensitive processes of CH4 emission and nitrification. Denudation by herbivorous birds increased cumulative CH4 flux by 233% (a mean of 63 g CH4 m-2 y-1) and inhibited coupled nitrification-denitrification, as indicated by nitrate availability and emissions of nitrous oxide. The recognition that large populations of aquatic herbivores may influence the capacity for wetlands to emit greenhouse gases and cycle nitrogen is particularly salient in the context of climate change and nutrient pollution mitigation goals. For example, our results suggest that annual emissions of 23 Gg of CH4 y-1 from ~55,000 ha of publicly owned waterfowl impoundments in the Southeastern U.S. could be tripled by overgrazing. </p><p>Hydrologically controlled moist-soil impoundment wetlands provide critical habitat for high densities of migratory bird populations, thus their potential to export nitrogen (N) to downstream waters may contribute to the eutrophication of aquatic ecosystems. To investigate the relative importance of N export from these built and managed habitats, I conducted a field study at an impoundment wetland that drains into hypereutrophic Lake Mattamuskeet. I found that prescribed hydrologic drawdowns of the impoundment exported roughly the same amount of N (14 to 22 kg ha-1) as adjacent fertilized agricultural fields (16 to 31 kg ha-1), and contributed approximately one-fifth of total N load (~45 Mg N y-1) to Lake Mattamuskeet. Ironically, the prescribed drawdown regime, designed to maximize waterfowl production in impoundments, may be exacerbating the degradation of habitat quality in the downstream lake. Few studies of wetland N dynamics have targeted impoundments managed to provide wildlife habitat, but a similar phenomenon may occur in some of the 36,000 ha of similarly-managed moist-soil impoundments on National Wildlife Refuges in the southeastern U.S. I suggest early drawdown as a potential method to mitigate impoundment N pollution and estimate it could reduce N export from our study impoundment by more than 70%.</p><p>In this dissertation research I found direct relationships between wetland restoration and impoundment management practices, and biogeochemical responses of greenhouse gas emission and nutrient cycling. Elevated soil C at a restored wetland increased CO2 losses even ten years after the organic matter was originally added and intensive herbivory impact on emergent aquatic vegetation resulted in a ~230% increase in CH4 emissions and impaired N cycling and removal. These findings have important implications for the basic understanding of the biogeochemical functioning of wetlands and practical importance for wetland restoration and impoundment management in the face of pressure to mitigate the environmental challenges of global warming and aquatic eutrophication.</p>

Relevância:

60.00% 60.00%

Publicador:

Resumo:

<p>Species invasions are more prevalent than ever before. While the addition of a species can dramatically change critical ecosystem processes, factors that mediate the direction and magnitude of those impacts have received less attention. A better understanding of the factors that mediate invasion impacts on ecosystem functioning is needed in order to target which exotic species will be most harmful and which systems are most vulnerable. The role of invasion on nitrogen (N) cycling is particularly important since N cycling controls ecosystem services that provision human health, e.g. nutrient retention and water quality.</p><p>We conducted a meta-analysis and in-depth studies focused on the invasive grass species, Microstegium vimineum, to better understand how (i) plant characteristics, (ii) invader abundance and neighbor identity, and (iii) environmental conditions mediate the impacts of invasion on N pools and fluxes. The results of our global meta-analysis support the concept that invasive species and reference community traits such as leaf %N and leaf C:N are useful for understanding invasion impacts on soil N cycling, but that trait dissimilarities between invaded and reference communities are most informative. Regarding the in-depth studies of Microstegium, we did not find evidence to suggest that invasion increases net nitrification as other studies have shown. Instead, we found that an interaction between its abundance and the neighboring plant identify were important for determining soil nitrate concentrations and net nitrification rates in the greenhouse. In field, we found that variability in environmental conditions mediated the impact of Microstegium invasion on soil N pools and fluxes, primarily net ammonification, between sites through direct, indirect, and interactive pathways. Notably, we detected a scenario in which forest openness has a negative direct effect and indirect positive effect on ammonification in sites with high soil moisture and organic matter. Collectively, our findings suggest that dissimilarity in plant community traits, neighbor identity, and environmental conditions can be important drivers of invasion impacts on ecosystem N cycling and should be considered when evaluating the ecosystem impacts of invasive species across heterogeneous landscapes.</p>

Relevância:

60.00% 60.00%

Publicador:

Resumo:

<p>Monitoring and enforcement are perhaps the biggest challenges in the design and implementation of environmental policies in developing countries where the actions of many small informal actors cause significant impacts on the ecosystem services and where the transaction costs for the state to regulate them could be enormous. This dissertation studies the potential of innovative institutions based on decentralized coordination and enforcement to induce better environmental outcomes. Such policies have in common that the state plays the role of providing the incentives for organization but the process of compliance happens through decentralized agreements, trust building, signaling and monitoring. I draw from the literatures in collective action, common-pool resources, game-theory and non-point source pollution to develop the instruments proposed here. To test the different conditions in which such policies could be implemented I designed two field-experiments that I conducted with small-scale gold miners in the Colombian Pacific and with users and providers of ecosystem services in the states of Veracruz, Quintana Roo and Yucatan in Mexico. This dissertation is organized in three essays. </p><p>The first essay, Collective Incentives for Cleaner Small-Scale Gold Mining on the Frontier: Experimental Tests of Compliance with Group Incentives given Limited State Monitoring, examines whether collective incentives, i.e. incentives provided to a group conditional on collective compliance, could outsource the required local monitoring, i.e. induce group interactions that extend the reach of the state that can observe only aggregate consequences in the context of small-scale gold mining. I employed a framed field-lab experiment in which the miners make decisions regarding mining intensity. The state sets a collective target for an environmental outcome, verifies compliance and provides a group reward for compliance which is split equally among members. Since the target set by the state transforms the situation into a coordination game, outcomes depend on expectations of what others will do. I conducted this experiment with 640 participants in a mining region of the Colombian Pacific and I examine different levels of policy severity and their ordering. The findings of the experiment suggest that such instruments can induce compliance but this regulation involves tradeoffs. For most severe targets with rewards just above costs raise gains if successful but can collapse rapidly and completely. In terms of group interactions, better outcomes are found when severity initially is lower suggesting learning. </p><p>The second essay, Collective Compliance can be Efficient and Inequitable: Impacts of Leaders among Small-Scale Gold Miners in Colombia, explores the channels through which communication help groups to coordinate in presence of collective incentives and whether the reached solutions are equitable or not. Also in the context of small-scale gold mining in the Colombian Pacific, I test the effect of communication in compliance with a collective environmental target. The results suggest that communication, as expected, helps to solve coordination challenges but still some groups reach agreements involving unequal outcomes. By examining the agreements that took place in each group, I observe that the main coordination mechanism was the presence of leaders that help other group members to clarify the situation. Interestingly, leaders not only helped groups to reach efficiency but also played a key role in equity by defining how the costs of compliance would be distributed among group members. </p><p>The third essay, Creating Local PES Institutions and Increasing Impacts of PES in Mexico: A real-Time Watershed-Level Framed Field Experiment on Coordination and Conditionality, considers the creation of a local payments for ecosystem services (PES) mechanism as an assurance game that requires the coordination between two groups of participants: upstream and downstream. Based on this assurance interaction, I explore the effect of allowing peer-sanctions on upstream behavior in the functioning of the mechanism. This field-lab experiment was implemented in three real cases of the Mexican Fondos Concurrentes (matching funds) program in the states of Veracruz, Quintana Roo and Yucatan, where 240 real users and 240 real providers of hydrological services were recruited and interacted with each other in real time. The experimental results suggest that initial trust-game behaviors align with participants perceptions and predicts baseline giving in assurance game. For upstream providers, i.e. those who get sanctioned, the threat and the use of sanctions increase contributions. Downstream users contribute less when offered the option to sanction as if that option signal an uncooperative upstream then the contributions rise in line with the complementarity in payments of the assurance game.</p>

Relevância:

60.00% 60.00%

Publicador:

Resumo:

<p>Periods of drought and low streamflow can have profound impacts on both human and natural systems. People depend on a reliable source of water for numerous reasons including potable water supply and to produce economic value through agriculture or energy production. Aquatic ecosystems depend on water in addition to the economic benefits they provide to society through ecosystem services. Given that periods of low streamflow may become more extreme and frequent in the future, it is important to study the factors that control water availability during these times. In the absence of precipitation the slower hydrological response of groundwater systems will play an amplified role in water supply. Understanding the variability of the fraction of streamflow contribution from baseflow or groundwater during periods of drought provides insight into what future water availability may look like and how it can best be managed. The Mills River Basin in North Carolina is chosen as a case-study to test this understanding. First, obtaining a physically meaningful estimation of baseflow from USGS streamflow data via computerized hydrograph analysis techniques is carried out. Then applying a method of time series analysis including wavelet analysis can highlight signals of non-stationarity and evaluate the changes in variance required to better understand the natural variability of baseflow and low flows. In addition to natural variability, human influence must be taken into account in order to accurately assess how the combined system reacts to periods of low flow. Defining a combined demand that consists of both natural and human demand allows us to be more rigorous in assessing the level of sustainable use of a shared resource, in this case water. The analysis of baseflow variability can differ based on regional location and local hydrogeology, but it was found that baseflow varies from multiyear scales such as those associated with ENSO (3.5, 7 years) up to multi decadal time scales, but with most of the contributing variance coming from decadal or multiyear scales. It was also found that the behavior of baseflow and subsequently water availability depends a great deal on overall precipitation, the tracks of hurricanes or tropical storms and associated climate indices, as well as physiography and hydrogeology. Evaluating and utilizing the Duke Combined Hydrology Model (DCHM), reasonably accurate estimates of streamflow during periods of low flow were obtained in part due to the models ability to capture subsurface processes. Being able to accurately simulate streamflow levels and subsurface interactions during periods of drought can be very valuable to water suppliers, decision makers, and ultimately impact citizens. Knowledge of future droughts and periods of low flow in addition to tracking customer demand will allow for better management practices on the part of water suppliers such as knowing when they should withdraw more water during a surplus so that the level of stress on the system is minimized when there is not ample water supply.</p>

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over 50% of the world's population live within 3. km of rivers and lakes highlighting the on-going importance of freshwater resources to human health and societal well-being. Whilst covering c. 3.5% of the Earth's non-glaciated land mass, trends in the environmental quality of the world's standing waters (natural lakes and reservoirs) are poorly understood, at least in comparison with rivers, and so evaluation of their current condition and sensitivity to change are global priorities. Here it is argued that a geospatial approach harnessing existing global datasets, along with new generation remote sensing products, offers the basis to characterise trajectories of change in lake properties e.g., water quality, physical structure, hydrological regime and ecological behaviour. This approach furthermore provides the evidence base to understand the relative importance of climatic forcing and/or changing catchment processes, e.g. land cover and soil moisture data, which coupled with climate data provide the basis to model regional water balance and runoff estimates over time. Using examples derived primarily from the Danube Basin but also other parts of the World, we demonstrate the power of the approach and its utility to assess the sensitivity of lake systems to environmental change, and hence better manage these key resources in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Southern Ocean ecosystem at the Antarctic Peninsula has steep natural environmental gradients, e.g. in terms of water masses and ice cover, and experiences regional above global average climate change. An ecological macroepibenthic survey was conducted in three ecoregions in the north-western Weddell Sea, on the continental shelf of the Antarctic Peninsula in the Bransfield Strait and on the shelf of the South Shetland Islands in the Drake Passage, defined by their environmental envelop. The aim was to improve the so far poor knowledge of the structure of this component of the Southern Ocean ecosystem and its ecological driving forces. It can also provide a baseline to assess the impact of ongoing climate change to the benthic diversity, functioning and ecosystem services. Different intermediate-scaled topographic features such as canyon systems including the corresponding topographically defined habitats 'bank', 'upper slope', 'slope' and 'canyon/deep' were sampled. In addition, the physical and biological environmental factors such as sea-ice cover, chlorophyll-a concentration, small-scale bottom topography and water masses were analysed. Catches by Agassiz trawl showed high among-station variability in biomass of 96 higher systematic groups including ecological key taxa. Large-scale patterns separating the three ecoregions from each other could be correlated with the two environmental factors, sea-ice and depth. Attribution to habitats only poorly explained benthic composition, and small-scale bottom topography did not explain such patterns at all. The large-scale factors, sea-ice and depth, might have caused large-scale differences in pelagic benthic coupling, whilst small-scale variability, also affecting larger scales, seemed to be predominantly driven by unknown physical drivers or biological interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of elevated pCO2/low pH on marine invertebrate benthic biodiversity, community structure and selected functional responses which underpin ecosystem services (such as community production and calcification) was tested in a medium-term (30 days) mesocosm experiment in June 2010. Standardised intertidal macrobenthic communities, collected (50.3567N, 4.1277W) using artificial substrate units (ASUs), were exposed to one of seven pH treatments (8.05, 7.8. 7.6, 7.4, 7.2, 6.8 and 6.0). Community net calcification/dissolution rates, as well as changes in biomass, community structure and diversity, were measured at the end of the experimental period. Communities showed significant changes in structure and reduced diversity in response to reduced pH: shifting from a community dominated by calcareous organisms to one dominated by non-calcareous organisms around either pH 7.2 (number of individuals and species) or pH 7.8 (biomass). These results were supported by a reduced total weight of CaCO3 structures in all major taxa at lowered pH and a switch from net calcification to net dissolution around pH 7.4 (Omega calc = 0.78, Omega ara = 0.5). Overall community soft tissue biomass did not change with pH and high mortality was observed only at pH 6.0, although molluscs and arthropods showed significant decreases in soft tissue. This study supports and refines previous findings on how elevated pCO2 can induce changes in marine biodiversity, underlined by differential vulnerability of different phyla. In addition, it shows significant elevated pCO2-/low pH-dependent changes in fundamental community functional responses underpinning changes in ecosystem services.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Harmonious territorial development and urban-rural linkages have attracted increased policy attention in recent years in the attempt to overcome the predominant discourse of the urban-rural divide. Territorial development refers to a process through which the geographies of territories inhabited by human societies is progressively transformed. It involves physical components (infrastructure, landscapes and townscapes, etc.) but also the territorial structure of settlements pattern, i.e. the geographic distribution of population and human activities (Council of Europe, 2007). Urban-rural linkages refer to complementary and synergetic functions and flows of people, natural resources, capital, goods, employment, ecosystem services, information and technology between rural, peri-urban and urban areas (UN-HABITAT, 2015). Urban-rural partnership is the mechanism of cooperation that manages linkages to reach common goals and enhance urban-rural linkages (OECD, 2013). Therefore, territorial or urban-rural partnerships are increasingly regarded as a desirable policy action, respectful of the particular identities of different territorial components (UCLG, 2016).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los indicadores de sostenibilidad climtica constituyen herramientas fundamentales para complementar las polticas de ordenamiento del territorio urbano y pueden beneficiar la calidad de vida sus habitantes. En el presente trabajo se dise un indicador climtico urbano para la ciudad de Baha Blanca considerando variables meteorolgicas y anlisis de la percepcin social. El mismo permiti delimitar la ciudad en cuatro regiones bien diferenciadas entre s. A partir de entonces, se realiz una propuesta sostenible para mitigar los efectos adversos del clima a partir de la aplicacin del mtodo DPSIR. Las mismas estuvieron destinadas a mejorar las condiciones de vida de la poblacin. Los resultados permitieron considerar que una pronta implementacin de la misma junto con una activa participacin de los actores sociales y los tomadores de decisiones es necesaria para mejorar las condiciones actuales en la que se encuentra la ciudad. Con las medidas propuestas, la poblacin local sabr cmo actuar ante la ocurrencia de distintos eventos extremos, eventos de desconfort climtico, etc. Al ser un mtodo sencillo, la metodologa aplicada en este estudio puede replicarse en otras ciudades del mundo con el objetivo de mejorar la calidad de vida de los habitantes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The last few decades have seen rapid proliferation of hard artificial structures (e.g., energy infra-structure, aquaculture, coastal defences) in the marine environment: ocean sprawl. The replacement of natural, often sedimentary, substrata with hard substrata has altered the distribution of species, particularly non-indigenous species, and can facilitate the assisted migration of native species at risk from climate change. This has been likened to urbanization as a driver of global biotic homogenization in the marine environmentthe process by which species invasions and extinctions increase the genetic, taxonomic, or functional similarity of communities at local, regional, and global scales. Ecological engineering research showed that small-scale engineering interventions can have a significant positive effect on the biodiversity of artificial structures, promoting more diverse and resilient communities on local scales. This knowledge can be applied to the design of multifunctional structures that provide a range of ecosystem services. In coastal regions, hybrid designs can work with nature to combine hard and soft approaches to coastal defence in a more environmentally sensitive manner. The challenge now is to manage ocean sprawl with the dual goal of supporting human populations and activities, simultaneously strengthening ecosystem resilience using an ecosystem- based approach.