927 resultados para duration, functional delta method, gamma kernel, hazard rate.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

“Teachers open the door, but you must enter by yourself.” I think of that old Chinese proverb today as we celebrate outstanding scholarship. I know our extremely talented and dedicated faculty, of whom I am especially proud, do a tremendous job of opening doors for those students who study with us in our classes in the College of Agricultural Sciences and Natural Resources and the College of Human Resources and Family Sciences here at the University of Nebraska – Lincoln. Today we also are very proud of and for each of you students being recognized for your scholastic accomplishments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

I am really pleased to have this opportunity to present the 2008 Gamma Sigma Delta Award of Merit to Alan Baquet. Being here to say "Congratulations, Alan," is a special treat for me - and I do say, "Congratulations, Alan." You are very deserving of this honor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we propose a hybrid hazard regression model with threshold stress which includes the proportional hazards and the accelerated failure time models as particular cases. To express the behavior of lifetimes the generalized-gamma distribution is assumed and an inverse power law model with a threshold stress is considered. For parameter estimation we develop a sampling-based posterior inference procedure based on Markov Chain Monte Carlo techniques. We assume proper but vague priors for the parameters of interest. A simulation study investigates the frequentist properties of the proposed estimators obtained under the assumption of vague priors. Further, some discussions on model selection criteria are given. The methodology is illustrated on simulated and real lifetime data set.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main aim of this work is to investigate the 1-butyl-3-methylimidazolium tetrafluoroborate ([C4C1Im]+[BF4]-) ionic liquid (IL) adsorption on the gamma-Al2O3 (100) by density functional theory calculations to try to rationalize the adsorption as an electrostatic phenomenon. Optimized geometries and interaction energies of IL one-monolayer on the gamma-Al2O3 were obtained on high surface coverage (one cationanion pair per 94.96 nm2). A study of dispersion force was made to estimate its contribution to the adsorption. Overall, the process is ruled by electrostatic interaction between ions and surface. Adsorption of the anion [BF4]- and cation [C4C1Im]+ was also studied by Bader charge analysis and charge density difference for supported and unsupported situations. It is suggested that the IL ions have their charges maintained with significant anion cloud polarization inward to the acid aluminum sites. (c) 2012 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The distribution of delta ferrite fraction was measured with the magnetic method in specimens of different stainless steel compositions cast by the investment casting (lost wax) process. Ferrite fraction measurements published in the literature for stainless steel cast samples were added to the present work data, enabling an extensive analysis about practical methods to calculate delta ferrite fractions in stainless steel castings. Nineteen different versions of practical methods were formed using Schaeffler, DeLong, and Siewert diagrams and the nickel and chromium equivalent indexes suggested by several authors. These methods were evaluated by a detailed statistical analysis, showing that the Siewert diagram, including its equivalent indexes and iso-ferrite lines, gives the lowest relative errors between calculated and measured delta ferrite fractions. Although originally created for stainless steel welds, this diagram gives relative errors lower than those for the current ASTM standard method (800/A 800M-01), developed to predict ferrite fractions in stainless steel castings. Practical methods originated from a combination of different chromium/nickel equivalent indexes and the iso-ferrite lines from Schaeffler diagram give the lowest relative errors when compared with combinations using other iso-ferrite line diagrams. For the samples cast in the present work, an increase in cooling rate from 0.78 to 2.7 K/s caused a decrease in the delta ferrite fraction, but a statistical hypothesis test revealed that this effect is significant in only 50% of the samples that have ferrite in their microstructures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To explore the molecular pathways underlying thiazolidinediones effects on pancreatic islets in conditions mimicking normo- and hyperglycemia, apoptosis rate and transcriptional response to Pioglitazone at both physiological and supraphysiological glucose concentrations were evaluated. Adult rat islets were cultured at physiological (5.6 mM) and supraphysiological (23 mM) glucose concentrations in presence of 10 μM Pioglitazone or vehicle. RNA expression profiling was evaluated with the PancChip 13k cDNA microarray after 24-h, and expression results for some selected genes were validated by qRT-PCR. The effects of Pioglitazone were investigated regarding apoptosis rate after 24-, 48- and 72-h. At 5.6 mM glucose, 101 genes were modulated by Pioglitazone, while 1,235 genes were affected at 23 mM glucose. Gene networks related to lipid metabolism were identified as altered by Pioglitazone at both glucose concentrations. At 23 mM glucose, cell cycle and cell death pathways were significantly regulated as well. At 5.6 mM glucose, Pioglitazone elicited a transient reduction in islets apoptosis rate while at 23 mM, Bcl2 expression was reduced and apoptosis rate was increased by Pioglitazone. Our data demonstrate that the effect of Pioglitazone on gene expression profile and apoptosis rate depends on the glucose concentration. The modulation of genes related to cell death and the increased apoptosis rate observed at supraphysiological glucose concentration raise concerns about Pioglitazone’s direct effects in conditions of hyperglycemia and reinforce the necessity of additional studies designed to evaluate TZDs effects on the preservation of β-cell function in situations where glucotoxicity might be more relevant than lipotoxicity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human reactions to vibration have been extensively investigated in the past. Vibration, as well as whole-body vibration (WBV), has been commonly considered as an occupational hazard for its detrimental effects on human condition and comfort. Although long term exposure to vibrations may produce undesirable side-effects, a great part of the literature is dedicated to the positive effects of WBV when used as method for muscular stimulation and as an exercise intervention. Whole body vibration training (WBVT) aims to mechanically activate muscles by eliciting neuromuscular activity (muscle reflexes) via the use of vibrations delivered to the whole body. The most mentioned mechanism to explain the neuromuscular outcomes of vibration is the elicited neuromuscular activation. Local tendon vibrations induce activity of the muscle spindle Ia fibers, mediated by monosynaptic and polysynaptic pathways: a reflex muscle contraction known as the Tonic Vibration Reflex (TVR) arises in response to such vibratory stimulus. In WBVT mechanical vibrations, in a range from 10 to 80 Hz and peak to peak displacements from 1 to 10 mm, are usually transmitted to the patient body by the use of oscillating platforms. Vibrations are then transferred from the platform to a specific muscle group through the subject body. To customize WBV treatments, surface electromyography (SEMG) signals are often used to reveal the best stimulation frequency for each subject. Use of SEMG concise parameters, such as root mean square values of the recordings, is also a common practice; frequently a preliminary session can take place in order to discover the more appropriate stimulation frequency. Soft tissues act as wobbling masses vibrating in a damped manner in response to mechanical excitation; Muscle Tuning hypothesis suggest that neuromuscular system works to damp the soft tissue oscillation that occurs in response to vibrations; muscles alters their activity to dampen the vibrations, preventing any resonance phenomenon. Muscle response to vibration is however a complex phenomenon as it depends on different parameters, like muscle-tension, muscle or segment-stiffness, amplitude and frequency of the mechanical vibration. Additionally, while in the TVR study the applied vibratory stimulus and the muscle conditions are completely characterised (a known vibration source is applied directly to a stretched/shortened muscle or tendon), in WBV study only the stimulus applied to a distal part of the body is known. Moreover, mechanical response changes in relation to the posture. The transmissibility of vibratory stimulus along the body segment strongly depends on the position held by the subject. The aim of this work was the investigation on the effects that the use of vibrations, in particular the effects of whole body vibrations, may have on muscular activity. A new approach to discover the more appropriate stimulus frequency, by the use of accelerometers, was also explored. Different subjects, not affected by any known neurological or musculoskeletal disorders, were voluntarily involved in the study and gave their informed, written consent to participate. The device used to deliver vibration to the subjects was a vibrating platform. Vibrations impressed by the platform were exclusively vertical; platform displacement was sinusoidal with an intensity (peak-to-peak displacement) set to 1.2 mm and with a frequency ranging from 10 to 80 Hz. All the subjects familiarized with the device and the proper positioning. Two different posture were explored in this study: position 1 - hack squat; position 2 - subject standing on toes with heels raised. SEMG signals from the Rectus Femoris (RF), Vastus Lateralis (VL) and Vastus medialis (VM) were recorded. SEMG signals were amplified using a multi-channel, isolated biomedical signal amplifier The gain was set to 1000 V/V and a band pass filter (-3dB frequency 10 - 500 Hz) was applied; no notch filters were used to suppress line interference. Tiny and lightweight (less than 10 g) three-axial MEMS accelerometers (Freescale semiconductors) were used to measure accelerations of onto patient’s skin, at EMG electrodes level. Accelerations signals provided information related to individuals’ RF, Biceps Femoris (BF) and Gastrocnemius Lateralis (GL) muscle belly oscillation; they were pre-processed in order to exclude influence of gravity. As demonstrated by our results, vibrations generate peculiar, not negligible motion artifact on skin electrodes. Artifact amplitude is generally unpredictable; it appeared in all the quadriceps muscles analysed, but in different amounts. Artifact harmonics extend throughout the EMG spectrum, making classic high-pass filters ineffective; however, their contribution was easy to filter out from the raw EMG signal with a series of sharp notch filters centred at the vibration frequency and its superior harmonics (1.5 Hz wide). However, use of these simple filters prevents the revelation of EMG power potential variation in the mentioned filtered bands. Moreover our experience suggests that the possibility of reducing motion artefact, by using particular electrodes and by accurately preparing the subject’s skin, is not easily viable; even though some small improvements were obtained, it was not possible to substantially decrease the artifact. Anyway, getting rid of those artifacts lead to some true EMG signal loss. Nevertheless, our preliminary results suggest that the use of notch filters at vibration frequency and its harmonics is suitable for motion artifacts filtering. In RF SEMG recordings during vibratory stimulation only a little EMG power increment should be contained in the mentioned filtered bands due to synchronous electromyographic activity of the muscle. Moreover, it is better to remove the artifact that, in our experience, was found to be more than 40% of the total signal power. In summary, many variables have to be taken into account: in addition to amplitude, frequency and duration of vibration treatment, other fundamental variables were found to be subject anatomy, individual physiological condition and subject’s positioning on the platform. Studies on WBV treatments that include surface EMG analysis to asses muscular activity during vibratory stimulation should take into account the presence of motion artifacts. Appropriate filtering of artifacts, to reveal the actual effect on muscle contraction elicited by vibration stimulus, is mandatory. However as a result of our preliminary study, a simple multi-band notch filtering may help to reduce randomness of the results. Muscle tuning hypothesis seemed to be confirmed. Our results suggested that the effects of WBV are linked to the actual muscle motion (displacement). The greater was the muscle belly displacement the higher was found the muscle activity. The maximum muscle activity has been found in correspondence with the local mechanical resonance, suggesting a more effective stimulation at the specific system resonance frequency. Holding the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization could be obtained by simply monitoring local acceleration (resonance). However, our study revealed some short term effects of vibratory stimulus; prolonged studies should be assembled in order to consider the long term effectiveness of these results. Since local stimulus depends on the kinematic chain involved, WBV muscle stimulation has to take into account the transmissibility of the stimulus along the body segment in order to ensure that vibratory stimulation effectively reaches the target muscle. Combination of local resonance and muscle response should also be further investigated to prevent hazards to individuals undergoing WBV treatments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In dieser Arbeit werden Strukturen beschrieben, die mit Polymeren auf Oberflächen erzeugt wurden. Die Anwendungen reichen von PMMA und PNIPAM Polymerbürsten, über die Restrukturierung von Polystyrol durch Lösemittel bis zu 3D-Strukturen, die aus PAH/ PSS Polyelektrolytmultischichten bestehen. Im ersten Teil werden Polymethylmethacrylat (PMMA) Bürsten in der ionischen Flüssigkeit 1-Butyl-3-Methylimidazolium Hexafluorophospat ([Bmim][PF6]) durch kontrollierte radikalische Polymerisation (ATRP) hergestellt. Kinetische Untersuchungen zeigten ein lineares und dichtes Bürstenwachstum mit einer Wachstumsrate von 4600 g/mol pro nm. Die durchschnittliche Pfropfdichte betrug 0.36 µmol/m2. Als Anwendung wurden Mikrotropfen bestehend aus der ionischen Flüssigkeit, Dimethylformamid und dem ATRP-Katalysator benutzt, um in einer definierten Geometrie Polymerbürsten auf Silizium aufzubringen. Auf diese Weise lässt sich eine bis zu 13 nm dicke Beschichtung erzeugen. Dieses Konzept ist durch die Verdampfung des Monomers Methylmethacrylat (MMA) limitiert. Aus einem 1 µl großen Tropfen aus ionischer Flüssigkeit und MMA (1:1) verdampft MMA innerhalb von 100 s. Daher wurde das Monomer sequentiell zugegeben. Der zweite Teil konzentriert sich auf die Strukturierung von Oberflächen mit Hilfe einer neuen Methode: Tintendruck. Ein piezoelektrisch betriebenes „Drop-on-Demand“ Drucksystem wurde verwendet, um Polystyrol mit 0,4 nl Tropfen aus Toluol zu strukturieren. Die auf diese Art und Weise gebildeten Mikrokrater können Anwendung als Mikrolinsen finden. Die Brennweite der Mikrolinsen kann über die Anzahl an Tropfen, die für die Strukturierung verwendet werden, eingestellt werden. Theoretisch und experimentell wurde die Brennweite im Bereich von 4,5 mm bis 0,21 mm ermittelt. Der zweite Strukturierungsprozess nutzt die Polyelektrolyte Polyvinylamin-Hydrochlorid (PAH) und Polystyrolsulfonat (PSS), um 3D-Strukturen wie z.B. Linien, Schachbretter, Ringe, Stapel mit einer Schicht für Schicht Methode herzustellen. Die Schichtdicke für eine Doppelschicht (DS) liegt im Bereich von 0.6 bis 1.1 nm, wenn NaCl als Elektrolyt mit einer Konzentration von 0,5 mol/l eingesetzt wird. Die Breite der Strukturen beträgt im Mittel 230 µm. Der Prozess wurde erweitert, um Nanomechanische Cantilever Sensoren (NCS) zu beschichten. Auf einem Array bestehend aus acht Cantilevern wurden je zwei Cantilever mit fünf Doppelschichten PAH/ PSS und je zwei Cantilever mit zehn Doppelschichten PAH/ PSS schnell und reproduzierbar beschichtet. Die Massenänderung für die individuellen Cantilever war 0,55 ng für fünf Doppelschichten und 1,08 ng für zehn Doppelschichten. Der daraus resultierende Sensor wurde einer Umgebung mit definierter Luftfeuchtigkeit ausgesetzt. Die Cantilever verbiegen sich durch die Ausdehnung der Beschichtung, da Wasser in das Polymer diffundiert. Eine maximale Verbiegung von 442 nm bei 80% Luftfeuchtigkeit wurde für die mit zehn Doppelschichten beschichteten Cantilever gefunden. Dies entspricht einer Wasseraufnahme von 35%. Zusätzlich konnte aus den Verbiegungsdaten geschlossen werden, dass die Elastizität der Polyelektrolytmultischichten zunimmt, wenn das Polymer gequollen ist. Das thermische Verhalten in Wasser wurde im nächsten Teil an nanomechanischen Cantilever Sensoren, die mit Poly(N-isopropylacrylamid)bürsten (PNIPAM) und plasmapolymerisiertem N,N-Diethylacrylamid beschichtet waren, untersucht. Die Verbiegung des Cantilevers zeigte zwei Bereiche: Bei Temperaturen kleiner der niedrigsten kritischen Temperatur (LCST) ist die Verbiegung durch die Dehydration der Polymerschicht dominiert und bei Temperaturen größer der niedrigsten kritischen Temperatur (LCST) reagiert der Cantilever Sensor überwiegend auf Relaxationsprozesse innerhalb der kollabierten Polymerschicht. Es wurde gefunden, dass das Minimum in der differentiellen Verbiegung mit der niedrigsten kritischen Temperatur von 32°C und 44°C der ausgewählten Polymeren übereinstimmt. Im letzten Teil der Arbeit wurden µ-Reflektivitäts- und µ-GISAXS Experimente eingeführt als neue Methoden, um mikrostrukturierte Proben wie NCS oder PEM Linien mit Röntgenstreuung zu untersuchen. Die Dicke von jedem individuell mit PMMA Bürsten beschichtetem NCS ist im Bereich von 32,9 bis 35,2 nm, was mit Hilfe von µ-Reflektivitätsmessungen bestimmt wurde. Dieses Ergebnis kann mit abbildender Ellipsometrie als komplementäre Methode mit einer maximalen Abweichung von 7% bestätigt werden. Als zweites Beispiel wurde eine gedruckte Polyelektrolytmultischicht aus PAH/PSS untersucht. Die Herstellungsprozedur wurde so modifiziert, dass Goldnanopartikel in die Schichtstruktur eingebracht wurden. Durch Auswertung eines µ-GISAXS Experiments konnte der Einbau der Partikel identifiziert werden. Durch eine Anpassung mit einem Unified Fit Modell wurde herausgefunden, dass die Partikel nicht agglomeriert sind und von einer Polymermatrix umgeben sind.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bioinformatics, in the last few decades, has played a fundamental role to give sense to the huge amount of data produced. Obtained the complete sequence of a genome, the major problem of knowing as much as possible of its coding regions, is crucial. Protein sequence annotation is challenging and, due to the size of the problem, only computational approaches can provide a feasible solution. As it has been recently pointed out by the Critical Assessment of Function Annotations (CAFA), most accurate methods are those based on the transfer-by-homology approach and the most incisive contribution is given by cross-genome comparisons. In the present thesis it is described a non-hierarchical sequence clustering method for protein automatic large-scale annotation, called “The Bologna Annotation Resource Plus” (BAR+). The method is based on an all-against-all alignment of more than 13 millions protein sequences characterized by a very stringent metric. BAR+ can safely transfer functional features (Gene Ontology and Pfam terms) inside clusters by means of a statistical validation, even in the case of multi-domain proteins. Within BAR+ clusters it is also possible to transfer the three dimensional structure (when a template is available). This is possible by the way of cluster-specific HMM profiles that can be used to calculate reliable template-to-target alignments even in the case of distantly related proteins (sequence identity < 30%). Other BAR+ based applications have been developed during my doctorate including the prediction of Magnesium binding sites in human proteins, the ABC transporters superfamily classification and the functional prediction (GO terms) of the CAFA targets. Remarkably, in the CAFA assessment, BAR+ placed among the ten most accurate methods. At present, as a web server for the functional and structural protein sequence annotation, BAR+ is freely available at http://bar.biocomp.unibo.it/bar2.0.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this work is to present various aspects of numerical simulation of particle and radiation transport for industrial and environmental protection applications, to enable the analysis of complex physical processes in a fast, reliable, and efficient way. In the first part we deal with speed-up of numerical simulation of neutron transport for nuclear reactor core analysis. The convergence properties of the source iteration scheme of the Method of Characteristics applied to be heterogeneous structured geometries has been enhanced by means of Boundary Projection Acceleration, enabling the study of 2D and 3D geometries with transport theory without spatial homogenization. The computational performances have been verified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of iterations and CPU time. The second part is devoted to the study of temperature-dependent elastic scattering of neutrons for heavy isotopes near to the thermal zone. A numerical computation of the Doppler convolution of the elastic scattering kernel based on the gas model is presented, for a general energy dependent cross section and scattering law in the center of mass system. The range of integration has been optimized employing a numerical cutoff, allowing a faster numerical evaluation of the convolution integral. Legendre moments of the transfer kernel are subsequently obtained by direct quadrature and a numerical analysis of the convergence is presented. In the third part we focus our attention to remote sensing applications of radiative transfer employed to investigate the Earth's cryosphere. The photon transport equation is applied to simulate reflectivity of glaciers varying the age of the layer of snow or ice, its thickness, the presence or not other underlying layers, the degree of dust included in the snow, creating a framework able to decipher spectral signals collected by orbiting detectors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rodents are most useful models to study physiological and pathophysiological processes in early development, because they are born in a relatively immature state. However, only few techniques are available to monitor non-invasively heart frequency and respiratory rate in neonatal rodents without restraining or hindering access to the animal. Here we describe experimental procedures that allow monitoring of heart frequency by electrocardiography (ECG) and breathing rate with a piezoelectric transducer (PZT) element without hindering access to the animal. These techniques can be easily installed and are used in the present study in unrestrained awake and anesthetized neonatal C57/Bl6 mice and Wistar rats between postnatal day 0 and 7. In line with previous reports from awake rodents we demonstrate that heart rate in rats and mice increases during the first postnatal week. Respiratory frequency did not differ between both species, but heart rate was significantly higher in mice than in rats. Further our data indicate that urethane, an agent that is widely used for anesthesia, induces a hypoventilation in neonates whilst heart rate remains unaffected at a dose of 1 g per kg body weight. Of note, hypoventilation induced by urethane was not detected in rats at postnatal 0/1. To verify the detected hypoventilation we performed blood gas analyses. We detected a respiratory acidosis reflected by a lower pH and elevated level in CO2 tension (pCO2) in both species upon urethane treatment. Furthermore we found that metabolism of urethane is different in P0/1 mice and rats and between P0/1 and P6/7 in both species. Our findings underline the usefulness of monitoring basic cardio-respiratory parameters in neonates during anesthesia. In addition our study gives information on developmental changes in heart and breathing frequency in newborn mice and rats and the effects of urethane in both species during the first postnatal week.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Das Chemokin CXCL12 (auch bekannt als SDF-1) ist ein kleines Protein (8-14) KDa, das in sechs Isoformen exprimiert wird (SDF-1α, SDF-1β, SDF-1γ, SDF- 1δ, SDF-1ε und SDF-1θ) von einem einzigen Gen, dass die Leukozyten-Wanderung regelt und variabel in einer Reihe von normalen und Krebsgeweben exprimiert wird.rnCXCL12 spielt verschiedene Rollen in der Tumorpathogenese. Es wurde nachgewiesen, dass CXCL12 das Tumorwachstum und die Malignität fördert, die Tumorangiogenese stärkt, sich an der Metastasierung beteiligt und zu immunsuppressiven Netzwerken innerhalb des Tumormikromilieus beiträgt. Daher liegt es nahe, dass der CXCL12/CXCR4-Signalweg ein wichtiges Ziel ist für die Entwicklung von neuartigen Krebstherapien.rnUm Licht auf die Rolle der Chemokin CXCL12 Splicevarianten in der Entwicklung von Krebs zu werfen und die mögliche physiologische Relevanz und ihre möglichen funktionellen Unterschiede bei Darmkrebs zu verstehen, haben wir alle CXCL12 Splicevarianten (alpha, beta, gamma, delta, epsilon und theta) in die kolorektalen Zelllinie SW480 und die Melanomzellinie D05 transfiziert und exprimiert.rnrnDiese Arbeit wurde erstellt, um die folgenden Ziele zu erreichen. Untersuchung der Rolle von CXCL12 Splicevarianten bei der Vermittlung von Tumorprogression, Adhäsion, Migration, Invasion und Metastasierung von Darmkrebs. Untersuchung, ob die CXCL12 Variantenwege ein wichtiges Ziel für die Entwicklung von Krebstherapien darstellen.rn• Um eine in vivo Mausmodell zu entwickeln, um die Rolle der CXCL12 Varianten im Rahmen des Tumorwachstums zu verstehen.rnrnUnsere Ergebnisse zeigen, dass:Der CXCL12 G801A Polymorphismus ist ein Low-Penetranz Risikofaktor für die Entwicklung von Darmkrebs. Der CXCL12-Gen-Polymorphismus rs1801157 ist mit dem T-Status (Tumor-node-Metastasen) assoziiert. Es gab keine Beziehung zwischen CXCL12-Gen-Polymorphismus rs1801157 und Fernmetastisen oder LN metastasen. Alle sechs CXCL12 Splicevarianten werden im Darmkrebs und in gesunder Kolon mucosa exprimiert. Die höchste Expression wird bei SDF-1alpha, dann SDF-1 beta gefunden. Alle sechs CXCL12 Varianten zeigen erhöhte Tumorzellproliferation in vitro. SDF-1beta, gefolgt von SDF-1alpha zeigte die größte Aktivität im Proliferationsassay.rn• Alle sechs CXCL12 Varianten induzieren die Tumorzelladhäsion.SDF-1beta dann SDF-1alpha zeigte die größte Aktivität im Rahmen des Adhäsionsassay. Alle sechs CXCL12 Varianten erhöhten die Zellmigration und Invasion von Tumorzellen in vitro. SDF-1theta und SDF-1epsilon 1theta zeigten die größte Aktivität, während die schwächste Aktivität mit SDF-1alpha und SDF-1beta beobachtet wurde. Alle sechs CXCL12 Varianten aktivieren Akt und (MAPK) Mitogen- acktivatedierte Protein kinase Wege und damit die Regulierung viele essentieller Prozesse in Tumorzellen, wie Proliferation, Migration, Invasion und Adhäsion. Es ist interessant festzustellen, dass AMD3100 die CXCL12 Splicevarianten inhibriert, die AKT-MEK-1/2-Phosphorylierung induzieren.rnDer Inhibitor AMD3100 unterdrückt stark die CXCL12 Varianten -delta, -epsilon und theta-und unterdrückt schwach CXCL12-gamma. während es keine signifikante Wirkung auf CXCL12-alpha und beta hatte. Es hat möglicherweise Auswirkungen auf mehrere große Signalwage in Bezug auf Proliferation, Migration und Invasions.rn• Es ist wichtig anzumerken, dass die Hemmung von CXCL12-Varianten durch AMD3100 einen der möglichen Ansaätze in der Krebstherapie darstellen kann.Wir schlagen vor, dass weitere Studien erwogen werden, die wir brauchen, um die biologische Aktivität dieser neuen CXCL12 Varianten bei verschiedenen Arten von Krebs klar zu verstehen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The project aimed to use results of contamination of city vegetation with heavy metals and sulphur compounds as the basis for analysing the integral response of trees and shrubs to contamination, through a complex method of phytoindication. The results were used to draw up recommendations on pollution reduction in the city and to develop the method of phytoindication as a means of monitoring environmental pollution in St. Petersburg and other large cities. Field investigations were carried out in August 1996, and 66 descriptions of green areas were made in order to estimate the functional state of plants in the Vasileostrovsky district. Investigations of the spectrum reflecting properties of plants showed considerable variation of albedo meanings of leaves under the influence of various internal and external factors. The results indicated that lime trees most closely reflect the condition of the environment. Practically all the green areas studied were in poor condition, the only exceptions being areas of ash trees, which are more resistant to environmental pollution, and one lime-tree alley in a comparatively unpolluted street. The study identified those types of trees which are more or less resistant to complex environmental pollution and Ms. Terekhina recommends that the species in the present green areas be changed to include a higher number of the more resistant species. The turbidimetric analysis of tree barks for sulphates gave an indication of the level and spatial distribution of each pollutant, and the results also confirmed other findings that electric conductivity is a significant feature in determining the extent of sulphate pollution. In testing for various metals, the lime tree showed the highest contents for all elements except magnesium, copper, zinc, cadmium and strontium, again confirming the species' vulnerability to pollution. Medium rates of concentration in the city and environs showed that city plants concentrate 3 times as many different elements and 10 times more chromium, copper and lead than do those in the suburbs. The second stage of the study was based on the concept of phytoindication, which presupposes that changes in the relation of chemical elements in regional biological circulation under the influence of technogenesis provide a criterion for predicting displacements in people's health. There are certain basic factors in this concept. The first is that all living beings are related ecologically as well as by their evolutionary origin, and that the lower an organism is on the evolutionary scale, the less adaptational reserve it has. The second is that smaller concentrations of chemical elements are needed for toxicological influence on plants than on people and so the former's reactions to geochemical factors are easier to characterise. Visual indicational features of urban plants are well defined and can form the basis of a complex "environment - public health" analysis. Specific plant reactions reflecting atmospheric pollution and other components of urbogeosystems make it possible to determine indication criteria for predicting possible disturbances in the general state of health of the population. Thirdly the results of phytoindication investigations must be taken together with information about public health in the area. It only proved possibly to analyse general indexes of public health based on statistical data from the late 1980s and early 1990s as the data of later years were greatly influenced by social factors. These data show that the rates of illness in St. Petersburg (especially for children) are higher than in Russia as a whole, for most classes of diseases, indicating that the population there is more sensitive to the ecological state of the urban environment. The Vasileostrovsky district had the second highest sick rate for adullts, while the rate of infant mortality in the first year of life was highest there. Ms. Terekhina recommends further studies to more precisely assess the effectiveness of the methods she tested, but has drawn up a proposed map of environmental hazard for the population, taking into account prevailing wind directions.