984 resultados para biological markers
Resumo:
Cancer testis antigens (CTAs) are expressed in a variety of malignant tumors but not in any normal adult tissues except germ cells and occasionally placenta. Because of this tumor-associated pattern of expression, CTAs are regarded as potential vaccine targets. The expression of CTAs in gastrointestinal stromal tumors (GIST) has not been analyzed systematically previously. The present study was performed to analyze the expression of CTA in GIST and to determine if CTA expression correlates with prognosis. Thirty-five GIST patients were retrospectively analyzed for their expression of CTAs by immunohistochemistry using the following monoclonal antibodies (mAb/antigen): MA454/MAGE-A1, M3H67/MAGE-A3, 57B/MAGE-A4, CT7-33/MAGE-C1 and E978/NY-ESO-1. Fourteen tumors (40%) expressed 1 or more of the 5 CTAs tested. Fourteen percent (n = 5/35) were positive for MAGE-A1, MAGE-A3 or MAGE-A4, respectively. Twenty-six percent (n = 9/35) stained positive for MAGE-C1 and 20% (n = 7/35) for NY-ESO-1. A highly significant correlation between CTA expression and tumor recurrence risk was observed (71% vs. 29%; p = 0.027). In our study population, the high-risk GIST expressed CTAs more frequently than low-risk GIST (p = 0.012). High-risk GISTs which stained positive for at least 1 CTA, recurred in 100% (n = 25) of the cases. This is the first study analyzing CTA expression in GIST and its prognostic value for recurrence. The CTA staining could add information to the individual patient prognosis and represent an interesting target for future treatment strategies.
Resumo:
The aim of this study was to investigate the usefulness of postmortem biochemical investigations in the diagnosis of fatal hypothermia. 10 cases of fatal hypothermia and 30 control cases were selected. A series of biochemical parameters, such as glucose, acetone, 3-beta-hydroxybutyrate, isopropyl alcohol, free fatty acids, adrenaline, growth hormone, adrenocorticotropic hormone, thyroid-stimulating hormone, cortisol, calcium, magnesium, C-reactive protein, procalcitonin as well as markers of renal and cardiac functions were measured in blood, postmortem serum from femoral blood, urine, vitreous and pericardial fluid. The results suggested that deaths due to hypothermia, especially in free-ethanol cases, are characterized by increased ketone levels in blood and other biological fluids, increased adrenaline concentrations in urine, increased cortisol levels in postmortem serum from femoral blood and increased free cortisol values in urine. Increased or decreased levels of other biological parameters are either the result of terminal metabolic changes or the expression of preexisting diseases and may provide information to elucidate the death process on a case-by-case basis.
Resumo:
The potential for "replacement cells" to restore function in Parkinson's disease has been widely reported over the past 3 decades, rejuvenating the central nervous system rather than just relieving symptoms. Most such experiments have used fetal or embryonic sources that may induce immunological rejection and generate ethical concerns. Autologous sources, in which the cells to be implanted are derived from recipients' own cells after reprogramming to stem cells, direct genetic modifications, or epigenetic modifications in culture, could eliminate many of these problems. In a previous study on autologous brain cell transplantation, we demonstrated that adult monkey brain cells, obtained from cortical biopsies and kept in culture for 7 weeks, exhibited potential as a method of brain repair after low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused dopaminergic cell death. The present study exposed monkeys to higher MPTP doses to produce significant parkinsonism and behavioral impairments. Cerebral cortical cells were biopsied from the animals, held in culture for 7 weeks to create an autologous neural cell "ecosystem" and reimplanted bilaterally into the striatum of the same six donor monkeys. These cells expressed neuroectodermal and progenitor markers such as nestin, doublecortin, GFAP, neurofilament, and vimentin. Five to six months after reimplantation, histological analysis with the dye PKH67 and unbiased stereology showed that reimplanted cells survived, migrated bilaterally throughout the striatum, and seemed to exert a neurorestorative effect. More tyrosine hydroxylase-immunoreactive neurons and significant behavioral improvement followed reimplantation of cultured autologous neural cells as a result of unknown trophic factors released by the grafts. J. Comp. Neurol. 522:2729-2740, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Distinct genetic structure in populations of Chrysoperla externa (Hagen) (Neuroptera, Chrysopidae) shown by genetic markers ISSR and COI gene. Green lacewings are generalist predators, and the species Chrysoperla externa presents a great potential for use in biological control of agricultural pests due to its high predation and reproduction capacities, as well as its easy mass rearing in the laboratory. The adaptive success of a species is related to genetic variability, so that population genetic studies are extremely important in order to maximize success of the biological control. Thus, the present study used nuclear (Inter Simple Sequence Repeat - ISSR) and mitochondrial (Cytochrome Oxidase I - COI) molecular markers to estimate the genetic variability of 12 populations in the São Paulo State, Brazil, as well as the genetic relationships between populations. High levels of genetic diversity were observed for both markers, and the highest values of genetic diversity appear associated with municipalities that have the greatest areas of native vegetation. There was high haplotype sharing, and there was no correlation between the markers and the geographic distribution of the populations. The AMOVA indicated absence of genetic structure for the COI gene, suggesting that the sampled areas formed a single population unit. However, the great genetic differentiation among populations showed by ISSR demonstrates that these have been under differentiation after their expansion or may also reflect distinct dispersal behavior between males and females.
Resumo:
Temporal variability was studied in the common sea urchin Paracentrotus lividus through the analysis of the genetic composition of three yearly cohorts sampled over two consecutive springs in a locality in northwestern Mediterranean. Individuals were aged using growth ring patterns observed in tests and samples were genotyped for five microsatellite loci. No reduction of genetic diversity was observed relative to a sample of the adult population from the same location or within cohorts across years. FST and amova results indicated that the differentiation between cohorts is rather shallow and not significant, as most variability is found within cohorts and within individuals. This mild differentiation translated into estimates of effective population size of 90100 individuals. When the observed excess of homozygotes was taken into account, the estimate of the average number of breeders increased to c. 300 individuals. Given our restricted sampling area and the known small-scale heterogeneity in recruitment in this species, our results suggest that at stretches of a few kilometres of shoreline, large numbers of progenitors are likely to contribute to the larval pool at each reproduction event. Intercohort variation in our samples is six times smaller than spatial variation between adults of four localities in the western Mediterranean. Our results indicate that, notwithstanding the stochastic events that take place during the long planktonic phase and during the settlement and recruitment processes, reproductive success in this species is high enough to produce cohorts genetically diverse and with little differentiation between them. Further research is needed before the link between genetic structure and underlying physical and biological processes can be well established.
Resumo:
Haemoglobin (Hb) and haematocrit (Hct) are measured as indirect markers of doping in athletes. We studied the effect of posture on these parameters in a typical antidoping setting. Venous blood samples were obtained from nine endurance athletes (six males, three females) and nine control subjects (six males, three females) immediately and after 5, 10, 15, 20 and 30 min after having adopted a seated position from normal daily activity. Hb (CV 0.72%) and Hct (CV 0.87%) were determined using an automated cell counter, plasma volume changes were calculated. Differences between the time points, gender and groups were calculated using a mixed-model procedure. Significant changes were observed in the first 10 min after sitting down but no further changes were noted between 10 and 30 min. Mean directional change for Hb and Hct between 0 min and the average of the period from 10 to 30 min was -2.4% (-0.35 g/dl) for Hb and -2.7% (-1.2%) for Hct. Plasma volume increased accordingly. Neither group nor gender had significant effects. Under typical conditions encountered during blood testing in doping control, a period of 10 min in a seated position is sufficient for the vascular volumes to re-equilibrate and to adapt to the new posture.
Resumo:
A recent study suggests that sex-specific dispersal rates can be quantitatively estimated on the basis of sex- and state-specific (pre- vs. postdispersal) F-statistics. In the present paper, we extend this approach to account for the hierarchical structure of natural populations, and we validate it through individual-based simulations. The model is applied to an empirical data set consisting of 536 individuals (males, females, and predispersal juveniles) of greater white-toothed shrews (Crocidura russula), sampled according to a hierarchical design and typed for seven autosomal microsatellite loci. From this dataset, dispersal is significantly female biased at the local scale (breeding-group level), but not at the larger scale (among local populations). We argue that selective pressures on dispersal are likely to depend on the spatial scale considered, and that short-distance dispersal should mainly respond to kin interactions (inbreeding or kin competition avoidance), which exert differential pressure on males and females.
Resumo:
Reliable diagnoses of sepsis remain challenging in forensic pathology routine despite improved methods of sample collection and extensive biochemical and immunohistochemical investigations. Macroscopic findings may be elusive and have an infectious or non-infectious origin. Blood culture results can be difficult to interpret due to postmortem contamination or bacterial translocation. Lastly, peripheral and cardiac blood may be unavailable during autopsy. Procalcitonin, C-reactive protein, and interleukin-6 can be measured in biological fluids collected during autopsy and may be used as in clinical practice for diagnostic purposes. However, concentrations of these parameters may be increased due to etiologies other than bacterial infections, indicating that a combination of biomarkers could more effectively discriminate non-infectious from infectious inflammations. In this article, we propose a review of the literature pertaining to the diagnostic performance of classical and novel biomarkers of inflammation and bacterial infection in the forensic setting.
Resumo:
After years of reciprocal lack of interest, if not opposition, neuroscience and psychoanalysis are poised for a renewed dialogue. This article discusses some aspects of the Freudian metapsychology and its link with specific biological mechanisms. It highlights in particular how the physiological concept of homeostasis resonates with certain fundamental concepts of psychoanalysis. Similarly, the authors underline how the Freud and Damasio theories of brain functioning display remarkable complementarities, especially through their common reference to Meynert and James. Furthermore, the Freudian theory of drives is discussed in the light of current neurobiological evidences of neural plasticity and trace formation and of their relationships with the processes of homeostasis. The ensuing dynamics between traces and homeostasis opens novel avenues to consider inner life in reference to the establishment of fantasies unique to each subject. The lack of determinism, within a context of determinism, implied by plasticity and reconsolidation participates in the emergence of singularity, the creation of uniqueness and the unpredictable future of the subject. There is a gap in determinism inherent to biology itself. Uniqueness and discontinuity: this should today be the focus of the questions raised in neuroscience. Neuroscience needs to establish the new bases of a "discontinuous" biology. Psychoanalysis can offer to neuroscience the possibility to think of discontinuity. Neuroscience and psychoanalysis meet thus in an unexpected way with regard to discontinuity and this is a new point of convergence between them.
Resumo:
It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach's properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure these variables in individual disease collections.
Resumo:
Inhibition of tumor angiogenesis suppresses tumor growth and metastatic spreading in many experimental models, suggesting that anti-angiogenic drugs may be used to treat human cancer. During the past decade more than eighty molecules that showed anti-angiogenic activity in preclinical studies were tested in clinical cancer trials, but most of them failed to demonstrate any measurable anti-tumor activity and none have been approved for clinical use. Recent results stemming from trials with anti-VEGF antibodies, used alone or in combination with chemotherapy, suggest that systemic anti-angiogenic therapy may indeed have a measurable impact on cancer progression and patient survival. From the clinical studies it became nevertheless clear that the classical endpoints used in anti-cancer trials do not bring sufficient discriminative power to monitor the effects of anti-angiogenic drugs. It is therefore necessary to identify and validate molecular, cellular and functional surrogate markers of angiogenesis to monitor activity and efficacy of anti-angiogenic drugs in patients. Availability of such markers will be instrumental to re-evaluate the role of tumor angiogenesis in human cancer, to identify new molecular targets and drugs, and to improve planning, monitoring and interpretation of future studies. Future anti-angiogenesis trials integrating biological endpoints and surrogate markers or angiogenesis will require close collaboration between clinical investigators and laboratory-based researchers.
Resumo:
The skeleton undergoes continuous turnover throughout life. In women, an increase in bone turnover is pronounced during childhood and puberty and after menopause. Bone turnover can be monitored by measuring biochemical markers of bone resorption and bone formation. Tartrate-resistant acid phosphatase (TRACP) is an enzyme secreted by osteoclasts, macrophages and dendritic cells. The secreted enzyme can be detected from the blood circulation by recently developed immunoassays. In blood circulation, the enzyme exists as two isoforms, TRACP 5a with an intact polypeptide chain and TRACP 5b in which the polypeptide chain consists of two subunits. The 5b form is predominantly secreted by osteoclasts and is thus associated with bone turnover. The secretion of TRACP 5b is not directly related to bone resorption; instead, the levels are shown to be proportional to the number of osteoclasts. Therefore, the combination of TRACP 5b and a marker reflecting bone degradation, such as C-terminal cross-linked telopeptides of type I collagen (CTX), enables a more profound analysis of the changes in bone turnover. In this study, recombinant TRACP 5a-like protein was proteolytically processed into TRACP 5b-like two subunit form. The 5b-like form was more active both as an acid phosphatase and in producing reactive oxygen species, suggesting a possible function for TRACP 5b in osteoclastic bone resorption. Even though both TRACP 5a and 5b were detected in osteoclasts, serum TRACP 5a levels demonstrated no change in response to alendronate treatment of postmenopausal women. However, TRACP 5b levels decreased substantially, demonstrating that alendronate decreases the number of osteoclasts. This was confirmed in human osteoclast cultures, showing that alendronate decreased the number of osteoclats by inducing osteoclast apoptosis, and TRACP 5b was not secreted as an active enzyme from the apoptotic osteoclasts. In peripubertal girls, the highest levels of TRACP 5b and other bone turnover markers were observed at the time of menarche, whereas at the same time the ratio of CTX to TRACP 5b was lowest, indicating the presence of a high number of osteoclasts with decreased resorptive activity. These results support the earlier findings that TRACP 5b is the predominant form of TRACP secreted by osteoclasts. The major source of circulating TRACP 5a remains to be established, but is most likely other cells of the macrophage-monocyte system. The results also suggest that bone turnover can be differentially affected by both osteoclast number and their resorptive activity, and provide further support for the possible clinical use of TRACP 5b as a marker of osteoclast number.
Resumo:
Skeletal tissue is constantly remodeled in a process where osteoclasts resorb old bone and osteoblasts form new bone. Balance in bone remodeling is related to age, gender and genetic factors, but also many skeletal diseases, such as osteoporosis and cancer-induced bone metastasis, cause imbalance in bone turnover and lead to decreased bone mass and increased fracture risk. Biochemical markers of bone turnover are surrogates for bone metabolism and may be used as indicators of the balance between bone resorption and formation. They are released during the remodeling process and can be conveniently and reliably measured from blood or urine by immunoassays. Most commonly used bone formation markers include N-terminal propeptides of type I collagen (PINP) and osteocalcin, whereas tartrate-resistant acid phosphatase isoform 5b (TRACP 5b) and C-terminal cross-linked telopeptide of type I collagen (CTX) are common resorption markers. Of these, PINP has been, until recently, the only marker not commercially available for preclinical use. To date, widespread use of bone markers is still limited due to their unclear biological significance, variability, and insufficient evidence of their prognostic value to reflect long term changes. In this study, the feasibility of bone markers as predictors of drug efficacy in preclinical osteoporosis models was elucidated. A non-radioactive PINP immunoassay for preclinical use was characterized and validated. The levels of PINP, N-terminal mid-fragment of osteocalcin, TRACP 5b and CTX were studied in preclinical osteoporosis models and the results were compared with the results obtained by traditional analysis methods such as histology, densitometry and microscopy. Changes in all bone markers at early timepoints correlated strongly with the changes observed in bone mass and bone quality parameters at the end of the study. TRACP 5b correlated strongly with the osteoclast number and CTX correlated with the osteoclast activity in both in vitro and in vivo studies. The concept “resorption index” was applied to the relation of CTX/TRACP 5b to describe the mean osteoclast activity. The index showed more substantial changes than either of the markers alone in the preclinical osteoporosis models used in this study. PINP was strongly associated with bone formation whereas osteocalcin was associated with both bone formation and resorption. These results provide novel insight into the feasibility of PINP, osteocalcin, TRACP 5b and CTX as predictors of drug efficacy in preclinical osteoporosis models. The results support clinical findings which indicate that short-term changes of these markers reflect long-term responses in bone mass and quality. Furthermore, this information may be useful when considering cost-efficient and clinically predictive drug screening and development assays for mining new drug candidates for skeletal diseases.
Resumo:
Low levels of sex hormone-binding globulin (SHBG) are considered to be an indirect index of hyperinsulinemia, predicting the later onset of diabetes mellitus type 2. In the insulin resistance state and in the presence of an increased pancreatic ß-cell demand (e.g. obesity) both absolute and relative increases in proinsulin secretion occur. In the present study we investigated the correlation between SHBG and pancreatic ß-cell secretion in men with different body compositions. Eighteen young men (30.0 ± 2.4 years) with normal glucose tolerance and body mass indexes (BMI) ranging from 22.6 to 43.2 kg/m2 were submitted to an oral glucose tolerance test (75 g) and baseline and 120-min blood samples were used to determine insulin, proinsulin and C-peptide by specific immunoassays. Baseline SHBG values were significantly correlated with baseline insulin (r = -0.58, P<0.05), proinsulin (r = -0.47, P<0.05), C-peptide (r = -0.55, P<0.05) and also with proinsulin at 120 min after glucose load (r = -0.58, P<0.05). Stepwise regression analysis revealed that proinsulin values at 120 min were the strongest predictor of SHBG (r = -0.58, P<0.05). When subjects were divided into obese (BMI >28 kg/m2, N = 8) and nonobese (BMI £25 kg/m2, N = 10) groups, significantly lower levels of SHBG were found in the obese subjects. The obese group had significantly higher baseline proinsulin, C-peptide and 120-min proinsulin and insulin levels. For the first time using a specific assay for insulin determination, a strong inverse correlation between insulinemia and SHBG levels was confirmed. The finding of a strong negative correlation between SHBG levels and pancreatic ß-cell secretion, mainly for the 120-min post-glucose load proinsulin levels, reinforces the concept that low SHBG levels are a suitable marker of increased pancreatic ß-cell demand.