955 resultados para bio-indication.
Resumo:
The main goal of the present thesis was to study some harmful algal species which cause blooms in Italian coastal waters, leading to consequences for human health, coastal ecosystem, fishery and tourism. In particular, in the first part of this thesis the toxicity of Adriatic strains of the raphidophyte Fibrocapsa japonica was investigated. Despite several hypotheses have been proposed for the toxic mechanism of the raphidophytes, especially for the species Chattonella antiqua and C. marina, which have been studied more extensively, just a few studies on the toxic effects of these species for different organisms were reported. Moreover, a careful reading of the literature evidenced as any ichthyotoxic events reported worldwide can be linked to F. japonica blooms. Although recently several studies were performed on F. japonica strains from the USA, Japan, Australia, New Zealand, the Netherlands, Germany, and France in order to characterize their growth and toxicity features, the work reported in this thesis results one of the first investigation on the toxic effects of F. japonica for different organisms, such as bacteria, crustaceans and fish. Mortality effects, together with haemolysis of fish erythrocytes, probably due to the relatively high amount of PUFAs produced by this species, were observed. Mortality for fish, however, was reported only at a high cell density and after a long exposition period (9-10 days); moreover a significant increase of H2O2 obtained in the tanks where sea basses were exposed to F. japonica was also relevant. This result may justify the absence of ichthyotoxic events in the Italian coasts, despite F. japonica blooms detected in these areas were characterized by high cell densities. This work reports also a first complete characterization of the fatty acids produced and extracellularly released by the Adriatic F. japonica, and results were also compared with the fatty acid profile of other strains. The absence of known brevetoxins in F. japonica algal extracts was also highlighted, leading to the hypothesis that the toxicity of F. japonica may be due to a synergic effect of PUFAs and ROS. Another microalgae that was studied in this thesis is the benthic dinoflagellate Ostreopsis cf. ovata. This species was investigated with the aim to investigate the effect of environmental parameters on its growth and toxicity. O. cf. ovata, in fact, shows different blooming periods along the Italian coasts and even the reported toxic effects are variable. The results of this work confirmed the high variability in the growth dynamic and toxin content of several Italian strains which were isolated in recent years along the Adriatic and Tyrrhenian Seas. Moreover, the effects of temperature and salinity on the behaviour of the different isolates are in good agreement with the results obtained from field surveys, which evidence as the environmental parameters are important factors modulating O. cf. ovata proliferation. Another relevant result that was highlighted is the anomaly in the production of palytoxin-like compounds reported by one of the studied isolate, in particular the one isolated in 2008 in Ancona (Adriatic Sea). Only this strain reported the absence of two (ovatoxin-b and –c) of the five ovatoxins so far known in the toxin profile and a different relative abundance of the other toxins. The last aspect that was studied in this thesis regards the toxin biosythesis. In fact, toxins produced (palytoxin-like compounds) or supposed to be produced (brevetoxin-like compounds) by O. cf. ovata and F. japonica, respectively, are polyketides, which are highly oxygenated compounds synthesized by complex enzymes known as polyketide synthase (PKS) enzymes. These enzymes are multi-domain complexes that structurally and functionally resemble the fatty acid synthases (FASs). This work reports the first study of PKS proteins in the dinoflagellates O. cf. ovata, C. monotis and in the raphidophyte F. japonica. For the first time some PKSs were identified in these species, confirming the presence of PKS proteins predicted by the in silico translation of the transcripts found in K. brevis also in other species. The identification of O. cf. ovata PKSs and the localization of the palytoxin-like compounds produced by this dinoflagellate in a similar location (chloroplast) as that observed for other dinoflagellate and cyanobacterial toxins provides some indication that these proteins may be involved in polyketide biosynthesis. However, their potential function as fatty acid synthases cannot be ruled out, as plant fatty acid synthesis also occurs within chloroplasts. This last hypothesis is also supported by the fact that in all the investigated species, and in particular in F. japonica, PKS proteins were present. Therefore, these results provide an important contribution to the study of the polyketides and of the involvement of PKS proteins in the toxin biosynthesis.
Resumo:
The present issue analyses bluefin tuna (Thynnus thunnus) and swordfish (Xiphias glaudis) diet, caught by professional long-line fishing in the middle Adriatic Sea (Pomo pit). These species represent apex predators in pelagic environment that may play key roles in determining food web structure and ecosystem dynamics. The studies about their feedings habits, based upon stomach contents analysis, are important for the comprehension of biological and ecological interaction. Over the years, many studies have been performed on the diet of tuna and swordfish in the Mediterranean Sea. This research is based on a fairly wide number of analyzed stomach contents, in comparison with the previous ones. In this work, the analysis of 340 stomach contents of bluefin tuna caught by long-line in the central Adriatic sea confirms in general the opportunistic behaviour of this species. Finding support the hypothesis that Adriatic tuna and swordfish chase their food over a wide bathymetric zone and probably near the surface at night. No indication of food preference respect to size of predator or sample season are found. It seems that the two species are able to cohabit because their trophic niche are not overlapped, changing during the time and the vertical and horizontal space.
Resumo:
The improvement of devices provided by Nanotechnology has put forward new classes of sensors, called bio-nanosensors, which are very promising for the detection of biochemical molecules in a large variety of applications. Their use in lab-on-a-chip could gives rise to new opportunities in many fields, from health-care and bio-warfare to environmental and high-throughput screening for pharmaceutical industry. Bio-nanosensors have great advantages in terms of cost, performance, and parallelization. Indeed, they require very low quantities of reagents and improve the overall signal-to-noise-ratio due to increase of binding signal variations vs. area and reduction of stray capacitances. Additionally, they give rise to new challenges, such as the need to design high-performance low-noise integrated electronic interfaces. This thesis is related to the design of high-performance advanced CMOS interfaces for electrochemical bio-nanosensors. The main focus of the thesis is: 1) critical analysis of noise in sensing interfaces, 2) devising new techniques for noise reduction in discrete-time approaches, 3) developing new architectures for low-noise, low-power sensing interfaces. The manuscript reports a multi-project activity focusing on low-noise design and presents two developed integrated circuits (ICs) as examples of advanced CMOS interfaces for bio-nanosensors. The first project concerns low-noise current-sensing interface for DC and transient measurements of electrophysiological signals. The focus of this research activity is on the noise optimization of the electronic interface. A new noise reduction technique has been developed so as to realize an integrated CMOS interfaces with performance comparable with state-of-the-art instrumentations. The second project intends to realize a stand-alone, high-accuracy electrochemical impedance spectroscopy interface. The system is tailored for conductivity-temperature-depth sensors in environmental applications, as well as for bio-nanosensors. It is based on a band-pass delta-sigma technique and combines low-noise performance with low-power requirements.
Resumo:
The promising development in the routine nanofabrication and the increasing knowledge of the working principles of new classes of highly sensitive, label-free and possibly cost-effective bio-nanosensors for the detection of molecules in liquid environment, has rapidly increased the possibility to develop portable sensor devices that could have a great impact on many application fields, such as health-care, environment and food production, thanks to the intrinsic ability of these biosensors to detect, monitor and study events at the nanoscale. Moreover, there is a growing demand for low-cost, compact readout structures able to perform accurate preliminary tests on biosensors and/or to perform routine tests with respect to experimental conditions avoiding skilled personnel and bulky laboratory instruments. This thesis focuses on analysing, designing and testing novel implementation of bio-nanosensors in layered hybrid systems where microfluidic devices and microelectronic systems are fused in compact printed circuit board (PCB) technology. In particular the manuscript presents hybrid systems in two validating cases using nanopore and nanowire technology, demonstrating new features not covered by state of the art technologies and based on the use of two custom integrated circuits (ICs). As far as the nanopores interface system is concerned, an automatic setup has been developed for the concurrent formation of bilayer lipid membranes combined with a custom parallel readout electronic system creating a complete portable platform for nanopores or ion channels studies. On the other hand, referring to the nanowire readout hybrid interface, two systems enabling to perform parallel, real-time, complex impedance measurements based on lock-in technique, as well as impedance spectroscopy measurements have been developed. This feature enable to experimentally investigate the possibility to enrich informations on the bio-nanosensors concurrently acquiring impedance magnitude and phase thus investigating capacitive contributions of bioanalytical interactions on biosensor surface.
Resumo:
Descrive il filtraggio delle bioimmagini mediante filtri, spiegazione caratteristiche di alcuni di essi ed esempi pratici.
Resumo:
Antibody microarrays are of great research interest because of their potential application as biosensors for high-throughput protein and pathogen screening technologies. In this active area, there is still a need for novel structures and assemblies providing insight in binding interactions such as spherical and annulus-shaped protein structures, e.g. for the utilization of curved surfaces for the enhanced protein-protein interactions and detection of antigens. Therefore, the goal of the presented work was to establish a new technique for the label-free detection of bio-molecules and bacteria on topographically structured surfaces, suitable for antibody binding.rnIn the first part of the presented thesis, the fabrication of monolayers of inverse opals with 10 μm diameter and the immobilization of antibodies on their interior surface is described. For this purpose, several established methods for the linking of antibodies to glass, including Schiff bases, EDC/S-NHS chemistry and the biotin-streptavidin affinity system, were tested. The employed methods included immunofluorescence and image analysis by phase contrast microscopy. It could be shown that these methods were not successful in terms of antibody immobilization and adjacent bacteria binding. Hence, a method based on the application of an active-ester-silane was introduced. It showed promising results but also the need for further analysis. Especially the search for alternative antibodies addressing other antigens on the exterior of bacteria will be sought-after in the future.rnAs a consequence of the ability to control antibody-functionalized surfaces, a new technique employing colloidal templating to yield large scale (~cm2) 2D arrays of antibodies against E. coli K12, eGFP and human integrin αvβ3 on a versatile useful glass surface is presented. The antibodies were swept to reside around the templating microspheres during solution drying, and physisorbed on the glass. After removing the microspheres, the formation of annuli-shaped antibody structures was observed. The preserved antibody structure and functionality is shown by binding the specific antigens and secondary antibodies. The improved detection of specific bacteria from a crude solution compared to conventional “flat” antibody surfaces and the setting up of an integrin-binding platform for targeted recognition and surface interactions of eukaryotic cells is demonstrated. The structures were investigated by atomic force, confocal and fluorescence microscopy. Operational parameters like drying time, temperature, humidity and surfactants were optimized to obtain a stable antibody structure.
Resumo:
La recente e innovativa filosofia della green chemistry che si sta diffondendo nell’industria chimica e l’incombente esaurimento di risorse fossili, stanno indirizzando la ricerca del settore chimico verso la realizzazione di processi sempre più sostenibili. Tra i processi che necessitano maggiormente di questi cambiamenti, vi è quello della produzione di resine epossidiche che per il 90% è costituito attualmente da resine a base di bisfenolo-A, neuro tossico e pericoloso per la riproduzione umana, ed epicloridrina cancerogena; entrambi ottenuti da risorse fossili. Per tali motivi, in questo elaborato si è cercato di sviluppare un processo di sintesi il più possibile “green”, per l’ottenimento di una molecola derivante da risorse rinnovabili, da sostituire all’epicloridrina nella sintesi di prepolimeri per resine epossidiche bio-based. Lo sviluppo del lavoro è avvenuto tramite lo studio dei reagenti, solventi e parametri operativi, ottenendo il glicidil tosilato a partire da glicerolo e tosil cloruro attraverso una reazione in sistema bifasico, semplice dal punto di vista pratico e senza l’utilizzo di composti tossici. Il glicidil tosilato è meno problematico in quanto meno volatile rispetto all’epicloridrina, ed inoltre le prove di reazione con il bisfenolo-A hanno portato all’ottenimento del prepolimero con rese maggiori rispetto a quelle ottenute nelle stesse condizioni con epicloridrina.
Resumo:
Questo studio propone un'esplorazione dei nessi tra processi migratori ed esperienze di salute e malattia a partire da un'indagine sulle migrazioni provenienti dall'America latina in Emilia-Romagna. Contemporaneamente indaga i termini del dibattito sulla diffusione della Malattia di Chagas, “infezione tropicale dimenticata” endemica in America centro-meridionale che, grazie all'incremento dei flussi migratori transnazionali, viene oggi riconfigurata come 'emergente' in alcuni contesti di immigrazione. Attraverso i paradigmi teorico-metodologici disciplinari dell'antropologia medica, della salute globale e degli studi sulle migrazioni, si è inteso indagare la natura della relazione tra “dimenticanza” ed “emergenza” nelle politiche che caratterizzano il contesto migratorio europeo e italiano nello specifico. Si sono analizzate questioni vincolate alla legittimità degli attori coinvolti nella ridefinizione del fenomeno in ambito pubblico; alle visioni che informano le strategie sanitarie di presa in carico dell'infezione; alle possibili ricadute di tali visioni nelle pratiche di cura. Parte della ricerca si è realizzata all'interno del reparto ospedaliero ove è stato implementato il primo servizio di diagnosi e trattamento per l'infezione in Emilia-Romagna. È stata pertanto realizzata una etnografia fuori/dentro al servizio, coinvolgendo i principali soggetti del campo di indagine -immigrati latinoamericani e operatori sanitari-, con lo scopo di cogliere visioni, logiche e pratiche a partire da un'analisi della legislazione che regola l'accesso al servizio sanitario pubblico in Italia. Attraverso la raccolta di narrazioni biografiche, lo studio ha contribuito a far luce su peculiari percorsi migratori e di vita nel contesto locale; ha permesso di riflettere sulla validità di categorie come quella di “latinoamericano” utilizzata dalla comunità scientifica in stretta correlazione con il Chagas; ha riconfigurato il senso di un approccio attento alle connotazioni culturali all'interno di un più ampio ripensamento delle forme di inclusione e di partecipazione finalizzate a dare asilo ai bisogni sanitari maggiormente percepiti e alle esperienze soggettive di malattia.
Resumo:
This study investigates the changes in soil fertility due to the different aggregate breakdown mechanisms and it analyses their relationships in different soil-plant systems, using physical aggregates behavior and organic matter (OM) changes as indicators. Three case studies were investigated: i) an organic agricultural soil, where a combined method, aimed to couple aggregate stability to nutrients loss, were tested; ii) a soil biosequence, where OM chemical characterisation and fractionation of aggregates on the basis of their physical behaviour were coupled and iii) a soils sequence in different phytoclimatic conditions, where isotopic C signature of separated aggregates was analysed. In agricultural soils the proposed combined method allows to identify that the severity of aggregate breakdown affected the quantity of nutrients lost more than nutrients availability, and that P, K and Mg were the most susceptible elements to water abrasion, while C and N were mainly susceptible to wetting. In the studied Chestnut-Douglas fir biosequence, OM chemical properties affected the relative importance of OM direct and indirect mechanisms (i.e., organic and organic-metallic cements, respectively) involved in aggregate stability and nutrient losses: under Douglas fir, high presence of carboxylate groups enhanced OM-metal interactions and stabilised aggregates; whereas under Chestnut, OM directly acted and fresh, more C-rich OM was preserved. OM direct mechanism seemed to be more efficient in C preservation in aggregates. The 13C natural abundance approach showed that, according to phytoclimatic conditions, stable macroaggregates can form both around partially decomposed OM and by organic-mineral interactions. In topsoils, aggregate resistance enhanced 13C-rich OM preservation, but in subsoils C preservation was due to other mechanisms, likely OM-mineral interactions. The proposed combined approach seems to be useful in the understanding of C and nutrients fate relates to water stresses, and in future research it could provide new insights into the complexity of soil biophysical processes.
Resumo:
In der vorliegenden Arbeit wurden Miniemulsionen als räumliche Begrenzungen für die Synthese von unterschiedlichen funktionellen Materialien mit neuartigen Eigenschaften verwendet. Das erste Themengebiet umfasst die Herstellung von Polymer/Calciumphosphat-Hybridpartikeln und –Hybridkapseln über die templatgesteuerte Mineralisation von Calciumphosphat. Die funktionalisierte Oberfläche von Polymernanopartikeln, welche über die Miniemulsionspolymerisation hergestellt wurden, diente als Templat für die Kristallisation von Calciumphosphat auf den Partikeln. Der Einfluss der funktionellen Carboxylat- und Phosphonat-Oberflächengruppen auf die Komplexierung von Calcium-Ionen sowie die Mineralisation von Calciumphosphat auf der Oberfläche der Nanopartikel wurde mit mehreren Methoden (ionenselektive Elektroden, REM, TEM und XRD) detailliert analysiert. Es wurde herausgefunden, dass die Mineralisation bei verschiedenen pH-Werten zu vollkommen unterschiedlichen Kristallmorphologien (nadel- und plättchenförmige Kristalle) auf der Oberfläche der Partikel führt. Untersuchungen der Mineralisationskinetik zeigten, dass die Morphologie der Hydroxylapatit-Kristalle auf der Partikeloberfläche mit der Änderung der Kristallisationsgeschwindigkeit durch eine sorgfältige Wahl des pH-Wertes gezielt kontrolliert werden kann. Sowohl die Eigenschaften der als Templat verwendeten Polymernanopartikel (z. B. Größe, Form und Funktionalisierung), als auch die Oberflächentopografie der entstandenen Polymer/Calciumphosphat-Hybridpartikel wurden gezielt verändert, um die Eigenschaften der erhaltenen Kompositmaterialien zu steuern. rnEine ähnliche bio-inspirierte Methode wurde zur in situ-Herstellung von organisch/anorganischen Nanokapseln entwickelt. Hierbei wurde die flexible Grenzfläche von flüssigen Miniemulsionströpfchen zur Mineralisation von Calciumphosphat an der Grenzfläche eingesetzt, um Gelatine/Calciumphosphat-Hybridkapseln mit flüssigem Kern herzustellen. Der flüssige Kern der Nanokapseln ermöglicht dabei die Verkapselung unterschiedlicher hydrophiler Substanzen, was in dieser Arbeit durch die erfolgreiche Verkapselung sehr kleiner Hydroxylapatit-Kristalle sowie eines Fluoreszenzfarbstoffes (Rhodamin 6G) demonstriert wurde. Aufgrund der intrinsischen Eigenschaften der Gelatine/Calciumphosphat-Kapseln konnten abhängig vom pH-Wert der Umgebung unterschiedliche Mengen des verkapselten Fluoreszenzfarbstoffes aus den Kapseln freigesetzt werden. Eine mögliche Anwendung der Polymer/Calciumphosphat-Partikel und –Kapseln ist die Implantatbeschichtung, wobei diese als Bindeglied zwischen künstlichem Implantat und natürlichem Knochengewebe dienen. rnIm zweiten Themengebiet dieser Arbeit wurde die Grenzfläche von Nanometer-großen Miniemulsionströpfchen eingesetzt, um einzelne in der dispersen Phase gelöste Polymerketten zu separieren. Nach der Verdampfung des in den Tröpfchen vorhandenen Lösungsmittels wurden stabile Dispersionen sehr kleiner Polymer-Nanopartikel (<10 nm Durchmesser) erhalten, die aus nur wenigen oder einer einzigen Polymerkette bestehen. Die kolloidale Stabilität der Partikel nach der Synthese, gewährleistet durch die Anwesenheit von SDS in der wässrigen Phase der Dispersionen, ist vorteilhaft für die anschließende Charakterisierung der Polymer-Nanopartikel. Die Partikelgröße der Nanopartikel wurde mittels DLS und TEM bestimmt und mit Hilfe der Dichte und des Molekulargewichts der verwendeten Polymere die Anzahl an Polymerketten pro Partikel bestimmt. Wie es für Partikel, die aus nur einer Polymerkette bestehen, erwartet wird, stieg die mittels DLS bestimmte Partikelgröße mit steigendem Molekulargewicht des in der Synthese der Partikel eingesetzten Polymers deutlich an. Die Quantifizierung der Kettenzahl pro Partikel mit Hilfe von Fluoreszenzanisotropie-Messungen ergab, dass Polymer-Einzelkettenpartikel hoher Einheitlichkeit hergestellt wurden. Durch die Verwendung eines Hochdruckhomogenisators zur Herstellung der Einzelkettendispersionen war es möglich, größere Mengen der Einzelkettenpartikel herzustellen, deren Materialeigenschaften zurzeit näher untersucht werden.rn
Resumo:
Sensors are devices that have shown widespread use, from the detection of gas molecules to the tracking of chemical signals in biological cells. Single walled carbon nanotube (SWCNT) and graphene based electrodes have demonstrated to be an excellent material for the development of electrochemical biosensors as they display remarkable electronic properties and the ability to act as individual nanoelectrodes, display an excellent low-dimensional charge carrier transport, and promote surface electrocatalysis. The present work aims at the preparation and investigation of electrochemically modified SWCNT and graphene-based electrodes for applications in the field of biosensors. We initially studied SWCNT films and focused on their topography and surface composition, electrical and optical properties. Parallel to SWCNTs, graphene films were investigated. Higher resistance values were obtained in comparison with nanotubes films. The electrochemical surface modification of both electrodes was investigated following two routes (i) the electrografting of aryl diazonium salts, and (ii) the electrophylic addition of 1, 3-benzodithiolylium tetrafluoroborate (BDYT). Both the qualitative and quantitative characteristics of the modified electrode surfaces were studied such as the degree of functionalization and their surface composition. The combination of Raman, X-ray photoelectron spectroscopy, atomic force microscopy, electrochemistry and other techniques, has demonstrated that selected precursors could be covalently anchored to the nanotubes and graphene-based electrode surfaces through novel carbon-carbon formation.
Resumo:
Epoxy resins are mainly produced by reacting bisphenol A with epichlorohydrin. Growing concerns about the negative health effects of bisphenol A are urging researchers to find alternatives. In this work diphenolic acid is suggested, as it derives from levulinic acid, obtained from renewable resources. Nevertheless, it is also synthesized from phenol, from fossil resources, which, in the current paper has been substituted by plant-based phenols. Two interesting derivatives were identified: diphenolic acid from catechol and from resorcinol. Epichlorohydrin on the other hand, is highly carcinogenic and volatile, leading to a tremendous risk of exposure. Thus, two approaches have been investigated and compared with epichlorohydrin. The resulting resins have been characterized to find an appropriate application, as epoxy are commonly used for a wide range of products, ranging from composite materials for boats to films for food cans. Self-curing capacity was observed for the resin deriving from diphenolic acid from catechol. The glycidyl ether of the diphenolic acid from resorcinol, a fully renewable compound, was cured in isothermal and non-isothermal tests tracked by DSC. Two aliphatic amines were used, namely 1,4-butanediamine and 1,6-hexamethylendiamine, in order to determine the effect of chain length on the curing of an epoxy-amine system and determine the kinetic parameters. The latter are crucial to plan any industrial application. Both diamines demonstrated superior properties compared to traditional bisphenol A-amine systems.
Resumo:
La Fusariosi della spiga (FDS) è una fitopatia diffusa a livello mondiale che colpisce le colture cerealicole, tra cui il frumento duro, ed è in grado di causare gravi danni di tipo qualitativo ed economico. Le specie fungine responsabili appartengono al genere Fusarium, tra cui F. graminearum, F. culmorum e più recentemente F. poae. La conseguenza più rilevante riguarda la contaminazione della granella da micotossine, molecole prodotte dai miceti, considerate dalla comunità scientifica ad alto rischio per la salute dell’uomo e animali. L’eziologia è molto complessa, dal momento che su una stessa spiga di frumento possono coesistere più specie fungine che contribuiscono ad influenzare i quantitativi di micotossine prodotte. Lo scopo della ricerca è incentrato sulla caratterizzazione di ceppi di F. poae, in termini di potenziale patogeno e aggressività. Tramite l’allestimento di un saggio di inoculazione in vitro “Petri-dish” è stato possibile attribuire un indice di aggressività a ciascun isolato fungino, basato su parametri quali AUHPC e AUDPC standard, insieme ad altre variabili come la riduzione della lunghezza del coleottile e del tasso di germinazione. Il saggio è stato esteso anche a F. culmorum, per valutare la riproducibilità del test su altre specie fungine. Il test in vitro offre diversi vantaggi, tra cui affidabilità e rapidità di esecuzione ed è quindi adatto allo screening di ceppi patogeni da utilizzare in successive sperimentazioni. Gli stessi ceppi di F. poae, provenienti da una prova di inoculazione artificiale in serra su piante di frumento duro, sono stati caratterizzati dal punto di vista bio-molecolare. Poichè lo studio della fusariosi della spiga richiede la determinazione quantitativa della biomassa dei patogeni nei tessuti della pianta-ospite, anche in assenza di sintomi, il protocollo di Real-Time PCR con chimica SYBR® Green I qui sviluppato, ha dimostrato essere un buon compromesso tra attendibilità, rapidità e costi complessivi della metodica.