931 resultados para alkaline degradation
Resumo:
The purpose of the present work is to investigate the compositional difference of polypropylene-polyethylene block copolymers (PP-b-PE) manufactured industrially by the process of degradation and hydrogenation, respectively. Each of the PP-b-PE copolymers was fractionated into three fractions with heptane and chloroform. The compositions of the three fractions were characterized by C-13 nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy, as well as differential scanning calorimetry (DSC) and thermal fractionation. The results showed that the Chloroform-soluble fraction was amorphous ethylene-propylene rubber, and the content of the rubber in PP-b-PE manufactured by hydrogenation was less than that by degradation. The degree of crystallinity of the chloroform-insoluble fraction of the PP-b-PE manufactured by hydrogenation is higher than that of by degradation.
Resumo:
In order to improve its thermal stability, poly(propylene carbonate)(PPC) was end-capped by different active agents. Thermogravimetric data show that the degradation temperature of uncapped PPC was lower than that of end-capped PPC. The kinetic parameters of thermal degradation of uncapped and end-capped PPC were calculated according to Chang's method. The results show that different mechanisms operate during the whole degradation temperature range for uncapped PPC. In the first stage, chain unzipping dominates the degradation. With increasing temperature, competing multi-step reactions occur. In the last stage, random chain scission plays an important role in degradation. For end-capped PPC, random chain scission dominates the whole degradation process.
Resumo:
The kinetics of the thermal degradation of poly(propylene carbonate) (PPC) were investigated with different kinetic methods with data from thermogravimetric analysis under dynamic conditions. The apparent activation energies obtained with different integral methods (Ozawa-Flynn-Wall and Coats-Redfern) were consistent with the values obtained with the Kinssinger method (99.93 kJ/mol). The solid-state decomposition process was a sigmoidal A(3) type in terms of the Coats-Redfern and Phadnis-Deshpande results. The influence of the heating rate on the thermal decomposition temperature was also studied. The derivative thermogravimetry curves of PPC confirmed only one weight-loss step.
Resumo:
As counterions of DNA on mica, Mg2+, Ca2+, Sr2+ and Ba2+ were used for,clarifying whether DNA molecules equilibrate or are trapped on mica surface. End to end distance and contour lengths were determined from statistical analysis of AFM data. It was revealed that DNA molecules can equilibrate on mica when Mg2+, Ca2+ and Sr2+ are counterions. When Ba2+ is present, significantly crossovered DNA molecules indicate that it is most difficult for DNA to equilibrate on mica and the trapping degree is different under different preparation conditions. In the presence of ethanol, using AFM we have also observed the dependence of B A conformational transition on counterion identities. The four alkaline earth metal ions cause the B-A transition in different degrees, in which Sr2+ induces the greatest structural transition.
Resumo:
The degradation behavior of polyimide (PMDA-ODA) induced by nitrogen laser irradiation was studied. The changes in the surface morphology and the composition of the irradiated polyimide films were examined by scanning electron microscopy, X-ray photoelectron spectroscopy and FT-IR spectroscopy. The initial reaction was achieved by photochemical degradation of polyimide in the highly electronic excited state by the absorption of a second 337 nm photon. Atmospheric oxygen sequentially reacted with the produced radicals to form a highly oxidized layer. The formation of carbonyl group was enhanced by the heat remaining on the irradiated polyimide film surfaces. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The thermooxidative degradtion of ethylene oxide and tetra-hydrofuran (EO-THF) co-polyether has been studied by electron spin resonance (ESR), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. The initial degradation site was found to be at the a-carbon of the ether bond. Two free radicals which derived from dehydrogenation and oxygen addition were successfully detected by spin-trapping technique which used alpha -phenyl-N-tert-butyl nitrone(PBN) as spin trap. Both FT-IR and NMR have been used to follow structural changes of the copolyether during degradation. Nearly 20 product fragments including formate, carbonate, methyl, alcohol, methylene-dioxy, hydroperoxide and semiformal have been characterized by D-1 and D-2 NMR. The thermooxidtion of co-polyether preferred to occur on the THF units especially at the alternating linkage of EO and THF. Antioxidant (BHT) not only retarded the thermooxidation but also modified the degradation products with less ester and methylene-dioxy groups hut more hydroxyl and methyl groups.
Resumo:
Five Ln(2)SrMCuO(6.5) oxides (M = Co, Ln = Y and Ho; M = Fe, Ln = Y, Ho, and Dy) were synthesized, and their crystal structures, IR spectra, and physical properties were studied. They have almost the same structure and crystallize in orthorhombic systems. Below room temperature, Y2SrFeCuO6.5, a known layered oxide, shows antiferromagnetic behavior, but the four new oxides are paramagnetic. Y2SrFeCuO6.5 fits the Curie-Weiss law in the temperature range 300-100 K, but Y2SrCoCuO6.5 shows complex magnetic behavior because of the disproportion of some Co+3 to Co+2 and Co+4 The five oxides are all p-type semiconductors in the measured temperature range and have large electrical resistivities at room temperature.
Resumo:
The luminescence of Ce3+ and Ce3+, Mn2+ co-doped BaB8O13 and SrB4O7 prepared in air is studied. The results show that tetravalent cerium ion can he reduced to trivalent state in the hosts and gives rise to efficient luminescence. Energy transfer between Ce3+ and Mn2+ is possible. Mn2+ ions can be efficiently sensitized by Ce3+ and exhibit green and red emissions which implied that Mn2+ occupied the crystallographic sites of cations and boron sites of the anoins, respectively. The intensity ratio of red to Been emission in matrix increases with the increasing of manganese concentration.
Resumo:
In order to develop photosensitive polyimides (PSPIs) imaged in alkaline aqueous solution, a photosensitive diamine and relevant polymer containing conjugated double bonds in the main chain have been synthesized. The photosensitive characteristics and thermal stability of the polymers were investigated. These polymers possess good thermal stability and sensitivity to UV irradiation, and could be used to form a PSPI resist using alkaline aqueous solution as developer. (C) 1999 Society of Chemical Industry.
Resumo:
The luminescence of Sm2+ in alkaline earth berates (BaB8O13, SrB4O7 and SrB6O10) is reported. The temperature effects on luminescence and decay time of Sm2+ are studied. Due to the thermal population, D-5(1) --> F-7(J) transitions of Sm2+ in BaB8O13, SrB4O7 and SrB6O10 are observed at room temperature. The f-d broad emission transitions of Sm2+ in SrB4O7 and SrB6O10 are observed at high temperature whereas no f-d transition is observed in BaB8O13.
Resumo:
The investigations of classification on the valence changes from RE3+ to RE2+ (RE = Eu, Sm, Yb, Tm) in host compounds of alkaline earth berate were performed using artificial neural networks (ANNs). For comparison, the common methods of pattern recognition, such as SIMCA, KNN, Fisher discriminant analysis and stepwise discriminant analysis were adopted. A learning set consisting of 24 host compounds and a test set consisting of 12 host compounds were characterized by eight crystal structure parameters. These parameters were reduced from 8 to 4 by leaps and bounds algorithm. The recognition rates from 87.5 to 95.8% and prediction capabilities from 75.0 to 91.7% were obtained. The results provided by ANN method were better than that achieved by the other four methods. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Blend films of poly(epsilon-caprolactone) (PCL) and poly(DL-lactide) (PDLLA) with 0.5 weight fraction of PCL were prepared by means of solution casting and their degradation behavior was studied in phosphate buffer solution containing Pseudomonas (PS) lipase. Enzymatic degradation of the blend films occurred continuously within the first 6 days and finally stopped when the film weight loss reached 50%, showing that only PCL in the blends degraded under the action of PS lipase in the buffer solution. These results indicate the selectivity of PS lipase on the promotion of degradation for PCL and PDLLA. The thermal properties and morphology of the blend films were investigated by differential scanning calorimetry, wide-angle X-ray diffraction and scanning electron microscopy (SEM). The morphology resulting from aggregate structures of PCL in the blends was destroyed in the enzymatic degradation process, as observed by SEM. These results confirm again the enzymatic degradation of PCL in the blends in the presence of PS lipase. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Electrochemical redox behavior of noradrenaline in alkaline solution on a glassy carbon electrode has been investigated by in situ UV-vis and CD spectroelectrochemistry by using a long optical path thin-layer cell. The experimental data were processed by using a double logarithmic method of analysis together with nonlinear regression which confirmed that the first step in both the oxidation of noradrenaline and reduction of noradrenochrome is a two-electron irreversible process governed by an EE mechanism. The kinetic parameters of the electrode reactions, i.e., charge transfer coefficient and the number of electrons transferred, alpha(1)n(1) = 0.11 and alpha(2)n(2) = 0.23, formal potentials modified with kinetics, E-1(0') = 0.65 (+/- 0.01) V and E-2(0') = 0.72V and standard rate cnstants, k(1)(0) = 7.0(+/-0.5)x10(-5) cm s(-1), for the first and second steps in the oxidation process of noradrenaline, and similarly, alpha(1)n(1) = 0.33, alpha(2)n(2) = 0.58, E-1(0') = 0.37(+/-0.01) V, E-0' = -0.25 (+/-0.01) V and k(1)(0) approximate to k(2)(0) = 1.06 (+/-0.05)x10(-4) cm s(-1) for the first and second steps in the reduction process of noradrenochrome were also determined.
Resumo:
The enzymatic degradation of poly(epsilon-caprolactone) (PCL) films in phosphate buffer solution containing lipases has been studied by DSC, WAXD and SEM. Three lipases, pseudomonas lipase (PS), porcine pancreatic lipase (PP), and candida cylindracea lipase (AY), were used. The results showed that the degradation of PCL films in phosphate buffer solution containing PP or AY was very slow: no weight loss could be found within 1 week. However, PCL film could degrade rapidly and completely within 4 days in phosphate buffer solution containing PS lipase. (C) 1997 Elsevier Science Limited.
Resumo:
Reduction of hydrogen peroxide at a glassy carbon (GC) electrode modified with sigma-bonded pyrrole iron(III) octaethylporphyrin complex, (OEP)Fe(Pyr), was studied by cyclic voltammetry and a rotating disk electrode. In 0.1N NaOH solution, it is shown that such an (OEP)Fe(Pyr)/GC electrode has a significant catalytic activity towards hydrogen peroxide reduction (E(D) = -0.80 V, k = 0.066 cm s(-1)); however, the electrode stability is low. The deactivation is observed when the reaction charge (Q) is passing through the (OEP)Fe(Pyr)/GC disk electrode. A linear rotation scan method is applied to study the kinetic process by determining the disk electrochemical response (i(D)) to rotation rate (omega) at a definite disk potential (E(D)). Considering that the number of adsorbed electroreduced catalyst molecules (Red) varies according to the disk potential, a factor theta(= Gamma(Red)/(Gamma(Red) + Gamma(Ox))) is introduced to describe the electrode surface area fraction for electroreduced species. The obtained Koutecky-Levich equation is applicable whatever the potential is.