993 resultados para above CO2-plume


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the biochemical response of freshwater green algae to elevated CO2 concentrations, Chlorella pyrenoidosa Chick and Chlamydomonas reinhardtii Dang cells were cultured at different CO2 concentrations within the range 3-186 μ mol/L and the biochemical composition, carbonic anhydrase (CA), and nitrate reductase activities of the cells were investigated. Chlorophylls (Chl), carotenoids, carbonhydrate, and protein contents were enhanced to varying extents with increasing CO2 concentration from 3-186 μ mol/L. The CO2 enrichment significantly increased the Chl a/Chl b ratio in Chlorella pyrenoidosa, but not in Chlamydomonas reinhardtii. The CO2 concentration had significant effects on CA and nitrate reductase activity. Elevating CO2 concentration to 186 μ mol/L caused a decline in intracellular and extracellullar CA activity. Nitrate reductase activity, under either light or dark conditions, in C. reinhardtii and C. pyrenoidosa was also significantly decreased with CO2 enrichment. From this study, it can be concluded that CO2 enrichment can affect biochemical composition, CA, and nitrate reductase activity, and that the biochemical response was species dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photosynthetic performance was examined in Skeletonema costatum (Greville) Cleve. under 12: 12-h light: dark (LD) cycle at ambient CO2 (350 muL L-1) and elevated CO2 (1000 muL L-1). At ambient CO2, the cellular chlorophyll a content, the light-saturated photosynthetic rate (P-m), the initial slope of the light saturation curves ( a), the photochemical efficiency of PSII (F-v/F-m), the apparent carboxylating efficiency (ACE) and the photosynthetic affinity for CO2 [1/K-m (CO2)] all showed rhythmical changes with different amplitudes during the light period. The P-m had similar changing pattern in the light period with the ACE and 1/K-m (CO2) rather than with the alpha and F-v/F-m, indicating that rhythmical changes of photosynthetic capacity may be mainly controlled by the activity of C- reduction associated with CO2 uptake during the light period. The CO2 enrichment reduced the ACE and the affinity to CO2, and increased the a, cellular chlorophyll a content and P m based on cell number. By contrast, the changing patterns of all photosynthetic parameters examined here during the light period had almost the same for cells grown at ambient CO2 and elevated CO2, suggesting that the photosynthetic rhythms of S. costatum are not affected by CO2 enrichment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth and activity of photosynthetic CO2 uptake and extracellular carbonic anhydrase (CA(ext)) of the marine diatom Skeletonema costatum were investigated while cultured at different levels of CO2 in order to see its physiological response to different CO2 concentrations under either a low (30 mumol . m(-2) . s(-1)) or high (210 mumol . m(-2) . s(-1)) irradiance. The changes in CO2 concentrations (4-31 mumol/L) affected the growth and net photosynthesis to a greater extent under the low than under the high light regime. CAext was detected in the cells grown at 4 mumol/L CO2 but not at 31 and 12 mumol/L CO2, with its activity being about 2.5-fold higher at the high than at the low irradiance. Photosynthetic CO2 affinity (1/K-1/2(CO2)) of the cells decreased with increased CO2 concentrations in culture. The cells cultured under the high-light show significantly higher photosynthetic CO2 affinity than those grown at the low-light level. It is concluded that the regulations of CA(ext) activity and photosynthetic CO2 affinity are dependent not only on CO2 concentration but also on light availability, and that the development of higher CA(ext) activity and CO2 affinity under higher light level could sufficiently support the photosynthetic demand for CO2 even at low level of CO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the possible impacts of increased atmospheric CO2 levels on algal growth and photosynthesis, the influence of CO2 concentration was tested on three planktonic algae (Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Scenedesmus obliquus). Increased CO2 concentration enhanced significantly the growth rate of all three species. Specific growth rates reached maximal values at 30, 100, and 60 muM CO2 in C. reinhardtii, C pyrenoidosa, and S. obliquus, respectively. Such significant enhancement of growth rate with enriched CO2 was also confirmed at different levels of inorganic N and P, being more profound at limiting levels of N in C pyrenoidosa and P in S. obliquus. The maximal rates of net photosynthesis, photosynthetic efficiency and light-saturating point increased significantly (p<0.05) in high-CO2-grown cells. Elevation of the CO2 levels in cultures enhanced the photoinhibition of C. reinhardtii, but reduced that of C pyrenoidosa and S. obliquus when exposed to high photon flux density. The photo-inhibited cells recovered to some extent (from 71% to 99%) when placed under dim light or in darkness, with better recovery in high-CO2-grown C. pyrenoidosa and S. obliquus. Although pH and pCO(2) effects cannot be distinguished from this study, it can be concluded that increased CO2 concentrations with decreased pH could affect the growth rate and photosynthetic physiology of C. reinhardtii, C. pyrenoidosa, and S. obliquus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorella pyrenoidosa was cultured with 350 and 700 p.p.m.v. CO2 at varied levels of light to see the impacts of doubled atmospheric CO2 concentration on its growth and photosynthesis. The CO2 enrichment did not affect the growth rate (mu), but significantly increased the cell density when light was sufficiently supplied. The CO2 enrichment significantly depressed light-saturated photosynthesis and dark respiration in the cells grown under a high-light regime, but not those under a low-light regime. The light-saturating point for photosynthesis and photosynthetic efficiency was not affected by the CO2 enrichment under either the high-light or low-light conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects on photosynthesis of CO, and desiccation in Porphyra haitanensis were investigated to establish the effects of increased atmospheric CO2 on this alga during emersion at low tides. With enhanced desiccation, net photosynthesis, dark respiration, photosynthetic efficiency, apparent carboxylating efficiency and light saturation point decreased, while the light compensation point and CO2 compensation point increased. Emersed net photosynthesis was not saturated by the present atmospheric CO2 level (about 350 ml m(-3)). and doubling the CO2 concentration (700 ml m(-3)) increased photosynthesis by between 31% and 89% at moderate levels of desiccation. The relative enhancement of emersed net photosynthesis at 700 ml m(-3) CO2 was greater at higher temperatures and higher levels of desiccation. The photosynthetic production of Porphyra haitanensis may benefit from increasing atmospheric CO2 concentration during emersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcystis aeruginosa Kutz. 7820 was cultured at 350 and 700 muL.L-1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom-forming cyanobacterium. Doubling Of CO2 concentration in the airflow enhanced its growth by 52%-77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light-saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC-saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3- levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 muL.L-1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3- concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diurnal photosynthesis of Nostoc flagelliforme was investigated at varied levels of CO2 concentrations and desiccation in order to estimate the effects of enriched CO2 and watering on its daily production. Photosynthetic activity was closely correlated with the desiccated status of the algal mats, increased immediately after watering, reached a maximum at moderate water loss, and then declined with further desiccation. Increased CO2 concentration enhanced the diurnal photosynthesis and raised the daily production. Watering twice per day enhanced the daily production due to prolonged period of active photosynthesis. The values of daily net production were 1321280 mumol CO2 g (d. wt)(-1) d(-1), corresponding to about 0.6-6.1% daily increase in dry weight. High-CO2-grown mats required higher levels of photon flux density to saturate the alga's photosynthesis in air. Air-grown mats showed higher photosynthetic affinity for CO2 and higher levels of dark respiration compared with high-CO2-grown samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

order to investigate the morphological response of freshwater green algae to elevated CO2 concentration, Chlamydomonas reinhardtii Dang and Scenedesmus obliquus Kutz were cultured with enriched CO2, and their microstructure and ultrastructure were examined by microscopy and electron microscopy. The effect of CO2 enrichment to 186 mumol/L, was insignificant on the shape and size of C. reinhardtii, but significant in reducing the volume of S. obliquus. High-CO2 increased the amount of chloroplast. The pyrenoids occurred in low-CO2-grown cells but not in high-CO2-grown ones and more starch granules were observed in the former.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mutant of Anabaena sp. strain PCC7120 requiring high CO2 was generated using Tn5 mutagenesis. This is the first data for a filamentous cyanobacterium. The mutant was capable of growing at 5% CO2, but incapable of growing at air levels of CO2. Southern hybridization analysis indicated that the Anabaena genome was inserted by the transposon at one site. The apparent photosynthetic affinity of the mutant to external dissolved inorganic carbon (DIC) was about 300 times lower that of the wild type (WT), and the medium alkalization rate as well as the carboxysomal carbonic anhydrase activity of the mutant was also lower than those of the WT. When the mutant was transferred from the culture medium bubbled with 5% CO2 to higher DIC (8.4% CO2) or 1% CO2, it showed similar responses to the WT. However, aberrant carboxysomes were found in the mutant cells through ultrastructural analysis, indicating it was most probably the wrong organization of the carboxysomes that eventually led to the inefficient operation of carboxysomal carbonic anhydrase and the subsequent defectiveness of the mutant in utilizing DIC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The terrestrial blue-green alga (cyanobacterium), Nostoc flagelliforme, was cultured in air at various levels of CO2, light and watering to see their effects on its growth. The alga showed the highest relative growth rate at the conditions of high CO2 (1500 ppm), high light regime (219-414 mu mol m(-2)s(-1)) and twice daily watering, but the lowest rate at the conditions of low light (58-114 mu mol m(-2)s(-1)) and daily twice watering. Increased watering had little effect on growth rate at 350 ppm CO2, but increased by about 70% at 1500ppm CO2 under high light conditions. It was concluded that enriched CO2 could enhance the growth of N. flagelliforme when sufficient light and water was supplied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-CO2-requiring mutant of Synechococcus sp. PCC7942 las been isolated after chemical mutagenesis of ethyl methane sulphonate (EMS). It was able to grow at 4% CO2, but not under ambient CO2. The initial screening of the mutant showed that the genetic reversion rate was about 10(-7) and death occurred 2 -3 days after being transferred from 4% CO2 to the ambient air. Its photosynthetic dependence on external dissolved inorganic carbon was higher than that of the wild type cells, but its carbonic anhydrase activity was comparatively low. In the ultrastructural level, various types of aberrant carboxysomes appeared in the mutant cells: rod-shaped carboxysomes, irregular carboxysomes and the "empty-inclusion carboxysomes" with increasing number of glycogen granules surrounding the thylakoids. All these alterations indicated that the mutant was defective in utilizing the external CO2. The induction of carboxysomes by lower levels of CO2 and the biogenesis of carboxysomes are herein discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to define its characteristics of the photosynthetic utilization of CO2 and HCO3- when the ambient inorganic carbon changed, HCG (High-CO2-Growing Cells) of cyanobacterium Anabaena sp. strain PCC7120 were prepared. The growth rate of HCG was higher than that of LCG (low-CO2-growing cells, i.e. air-growing cells). When the HCG cells were transferred from 5% CO2 to air levels of CO2 , a series of changes took place: its carbonic anhydrase activity as well as its photosynthetic affinity to the external inorganic carbon significantly increased; the number of the carboxysomes, which is one of the most important components of CCM in cyanobacteria also increased. These facts indicated that the CCM activity of Anabaena PCC 7120 was induced. When the pH in the medium increased from 6 to 9, the photosynthetic affinity to external inorganic carbon of both HCG and LCG declined, while the apparent photosynthetic affinity to external CO2 increased. In the light of these findings, this inducible CCM in cyanobacteria provided a good model for the study of the photosynthetic Ci utilization in the phototrophic microoganisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The third-order optical nonlinear refractive properties of InAs/GaAs quantum dots grown by molecular beam epitaxy have been measured using the reflection Z-scan technique at above-bandgap energy. The nonlinear refractive index and nonlinear absorption index of the InAs/GaAs quantum dots were determined for wavelengths from 740 to 777 nm. The measured results are compared with the nonlinear refractive response of several typical III-V group semiconductor materials. The corresponding mechanisms responsible for the large nonlinear response are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-indium-content InxGa1-xAs/GaAs single/multi-quantum well (SQW/MQW) structures have been systematically investigated. By optimizing the molecular-beam epitaxy growth conditions, the critical thickness of the strained In0.475Ga0.525As/GaAs QWs is raised to 7 nm, which is much higher than the value given by the Matthews and Blakeslee model. The good crystalline quality of the strained InGaAs/GaAs MQWs is proved by x-ray rocking curves. Photoluminescence measurements show that an emission wavelength of 1.25 mum at room temperatures with narrower full width at half maximum less than 30 meV can be obtained. The strain relaxation mechanism is discussed using the Matthews-Blakeslee model. (C) 2004 American Institute of Physics.