997 resultados para Wells-Barnett, Ida B--1862-1931
Resumo:
The temperature of the upper atmosphere affects the height of primary cosmic ray interactions and the production of high-energy cosmic ray muons which can be detected deep underground. The MINOS far detector at Soudan, MN, has collected over 67 X 10(6) cosmic ray induced muons. The underground muon rate measured over a period of five years exhibits a 4% peak-to-peak seasonal variation which is highly correlated with the temperature in the upper atmosphere. The coefficient, alpha(T), relating changes in the muon rate to changes in atmospheric temperature was found to be alpha(T) 0: 873 +/- 0: 009(stat) +/- 0.010(syst). Pions and kaons in the primary hadronic interactions of cosmic rays in the atmosphere contribute differently to alpha(T) due to the different masses and lifetimes. This allows the measured value of alpha(T) to be interpreted as a measurement of the K/pi ratio for E(p) greater than or similar to 7 TeV of 0.12(-0.05)(+0.07), consistent with the expectation from collider experiments.
Resumo:
Magnetoresistance measurements were performed on an n-type PbTe/PbEuTe quantum well and weak antilocalization effects were observed. This indicates the presence of spin orbit coupling phenomena and we showed that the Rashba effect is the main mechanism responsible for this spin orbit coupling. Using the model developed by Iordanskii et al., we fitted the experimental curves and obtained the inelastic and spin orbit scattering times. Thus we could compare the zero field energy spin-splitting predicted by the Rashba theory with the energy spin-splitting obtained from the analysis of the experimental curves. The final result confirms the theoretical prediction of strong Rashba effect on IV-VI based quantum wells.
Resumo:
We study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity sigma(xy) approximate to 0 and in a minimum of diagonal conductivity sigma(xx) at nu = nu(p) - nu(n) = 0, where nu(n) and nu(p) are the electron and hole Landau level filling factors. We suggest that the transport at the CNP point is determined by electron-hole ""snake states'' propagating along the nu = 0 lines. Our observations are qualitatively similar to the quantum Hall effect in graphene as well as to the transport in a random magnetic field with a zero mean value.
Resumo:
We study a Al(x)Ga(x-1)As parabolic quantum well (PQW) with GaAs/Al(x)Ga(x-1)As square superlattice. The magnetotransport in PQW with intentionally disordered short-period superlattice reveals a surprising transition from electrons distribution over whole parabolic well to independent-layer states with unequal density. The transition occurs in the perpendicular magnetic field at Landau filling factor v approximate to 3 and is signaled by the appearance of the strong and developing fractional quantum Hall (FQH) states and by the enhanced slope of the Hall resistance. We attribute the transition to the possible electron localization in the x-y plane inside the lateral wells, and formation of the FQH states in the central well of the superlattice, driven by electron-electron interaction.
Resumo:
Previous resistively detected NMR (RDNMR) studies on the nu approximate to 1 quantum Hall state have reported a ""dispersionlike"" line shape and extremely short nuclear-spin-lattice relaxation times, observations which have been attributed to the formation of a skyrme lattice. Here we examine the evolution of the RDNMR line shape and nuclear-spin relaxation for Zeeman: Coulomb energy ratios ranging from 0.012 to 0.036. According to theory, suppression of the skyrme crystal, along with the associated Goldstone mode nuclear-spin-relaxation mechanism, is expected at the upper end of this range. However, we find that the anomalous line shape persists at high Zeeman energy, and only a modest decrease in the RDNMR-detected nuclear-spin-relaxation rate is observed.
Resumo:
We report on temperature-dependent magnetoresistance measurements in balanced double quantum wells exposed to microwave irradiation for various frequencies. We have found that the resistance oscillations are described by the microwave-induced modification of electron distribution function limited by inelastic scattering (inelastic mechanism), up to a temperature of T*similar or equal to 4 K. With increasing temperature, a strong deviation of the oscillation amplitudes from the behavior predicted by this mechanism is observed, presumably indicating a crossover to another mechanism of microwave photoresistance, with similar frequency dependence. Our analysis shows that this deviation cannot be fully understood in terms of contribution from the mechanisms discussed in theory.
Resumo:
The transport properties of the ""inverted"" semiconductor HgTe-based quantum well, recently shown to be a two-dimensional topological insulator, are studied experimentally in the diffusive regime. Nonlocal transport measurements are performed in the absence of magnetic field, and a large signal due to the edge states is observed. This shows that the edge states can propagate over a long distance, similar to 1 mm, and therefore, there is no difference between local and nonlocal electrical measurements in a topological insulator. In the presence of an in-plane magnetic field a strong decrease of the local resistance and complete suppression of the nonlocal resistance is observed. We attribute this behavior to an in-plane magnetic-field-induced transition from the topological insulator state to a conventional bulk metal state.
Resumo:
We observe a large positive magnetoresistance in a bilayer electron system (double quantum well) as the latter is driven by the external gate from double to single layer configuration. Both classical and quantum contributions to magnetotransport are found to be important for explanation of this effect. We demonstrate that these contributions can be separated experimentally by studying the magnetic-field dependence of the resistance at different gate voltages. The experimental results are analyzed and described by using the theory of low-field magnetotransport in the systems with two occupied subbands.
Resumo:
Fusion cross sections were measured for the exotic proton-halo nucleus (8)B incident on a (58)Ni target at several energies near the Coulomb barrier. This is the first experiment to report on the fusion of a protonhalo nucleus. The resulting excitation function shows a striking enhancement with respect to expectations for normal projectiles. Evidence is presented that the sum of the fusion and breakup yields saturates the total reaction cross section.
Resumo:
Elastic scattering of (8)B, (7)Be, and (6)Li on a (58)Ni target has been measured at energies near the Coulomb barrier. Optical-model fits were made to the experimental angular distributions, and total reaction cross sections were deduced. A comparison with other systems provides striking evidence for proton-halo effects on (8)B reactions. As opposed to the situation for the neutron-halo nucleus (6)He, for which particle transfer dominates, the ""extra"" cross section observed for (8)B appears to result entirely from projectile breakup.
Resumo:
Angular distributions for the elastic scattering of (8)B, (7)Be, and (6)Li on a (12)C target have been measured at E(lab) = 25.8, 18.8, and 12.3 MeV, respectively. The analyses of these angular distributions have been performed in terms of the optical model using Woods-Saxon and double-folding type potentials. The effect of breakup in the elastic scattering of (8)B + (12)C is investigated by performing coupled-channels calculations with the continuum discretized coupled-channel method and cluster-model folding potentials. Total reaction cross sections were deduced from the elastic-scattering analysis and compared with published data on elastic scattering of other weakly and tightly bound projectiles on (12)C, as a function of energy. With the exception of (4)He and (16)O, the data can be described using a universal function for the reduced cross sections.
Resumo:
A method to determine the effects of the geometry and lateral ordering on the electronic properties of an array of one-dimensional self-assembled quantum dots is discussed. A model that takes into account the valence-band anisotropic effective masses and strain effects must be used to describe the behavior of the photoluminescence emission, proposed as a clean tool for the characterization of dot anisotropy and/or inter-dot coupling. Under special growth conditions, such as substrate temperature and Arsenic background, 1D chains of In(0.4)Ga(0.6) As quantum dots were grown by molecular beam epitaxy. Grazing-incidence X-ray diffraction measurements directly evidence the strong strain anisotropy due to the formation of quantum dot chains, probed by polarization-resolved low-temperature photoluminescence. The results are in fair good agreement with the proposed model.
Resumo:
We theoretically investigate the Rashba spin-orbit interaction in InAs/GaSb quantum wells (QWs). We find that the Rashba spin-splitting (RSS) sensitively depends on the thickness of the InAs layer. The RSS exhibits nonlinear behavior for narrow InAs/GaSb QWs and the oscillating feature for wide InAs/GaSb QWs. The nonlinear and oscillating behaviors arise from the weakened and enhanced interband coupling. The RSS also show asymmetric features respect to the direction of the external electric field. (C) 2008 American Institute of Physics.
Resumo:
The structure of laser glasses in the system (Y(2)O(3))(0.2){(Al(2)O(3))(x))(B(2)O(3))(0.8-x)} (0.15 <= x <= 0.40) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as electron spin echo envelope modulation (ESEEM) of Yb-doped samples. The latter technique has been applied for the first time to an aluminoborate glass system. (11)B magic-angle spinning (MAS)-NMR spectra reveal that, while the majority of the boron atoms are three-coordinated over the entire composition region, the fraction of three-coordinated boron atoms increases significantly with increasing x. Charge balance considerations as well as (11)B NMR lineshape analyses suggest that the dominant borate species are predominantly singly charged metaborate (BO(2/2)O(-)), doubly charged pyroborate (BO(1/2)(O(-))(2)), and (at x = 0.40) triply charged orthoborate groups. As x increases along this series, the average anionic charge per trigonal borate group increases from 1.38 to 2.91. (27)Al MAS-NMR spectra show that the alumina species are present in the coordination states four, five and six, and the fraction of four-coordinated Al increases markedly with increasing x. All of the Al coordination states are in intimate contact with both the three-and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, non-segregated glass structure. (89)Y solid state NMR spectra show a significant chemical shift trend, reflecting that the second coordination sphere becomes increasingly ""aluminate-like'' with increasing x. This conclusion is supported by electron spin echo envelope modulation (ESEEM) data of Yb-doped glasses, which indicate that both borate and aluminate species participate in the medium range structure of the rare-earth ions, consistent with a random spatial distribution of the glass components.
Molecular determinants of improved cathepsin B inhibition by new cystatins obtained by DNA shuffling
Resumo:
Background: Cystatins are inhibitors of cysteine proteases. The majority are only weak inhibitors of human cathepsin B, which has been associated with cancer, Alzheimer's disease and arthritis. Results: Starting from the sequences of oryzacystatin-1 and canecystatin-1, a shuffling library was designed and a hybrid clone obtained, which presented higher inhibitory activity towards cathepsin B. This clone presented two unanticipated point mutations as well as an N-terminal deletion. Reversing each point mutation independently or both simultaneously abolishes the inhibitory activity towards cathepsin B. Homology modeling together with experimental studies of the reverse mutants revealed the likely molecular determinants of the improved inhibitory activity to be related to decreased protein stability. Conclusion: A combination of experimental approaches including gene shuffling, enzyme assays and reverse mutation allied to molecular modeling has shed light upon the unexpected inhibitory properties of certain cystatin mutants against Cathepsin B. We conclude that mutations disrupting the hydrophobic core of phytocystatins increase the flexibility of the N-terminus, leading to an increase in inhibitory activity. Such mutations need not affect the inhibitory site directly but may be observed distant from it and manifest their effects via an uncoupling of its three components as a result of increased protein flexibility.