910 resultados para Vertical Component
Resumo:
Sex chromosome differentiation in Rana temporaria varies strikingly among populations or families: whereas some males display well-differentiated Y haplotypes at microsatellite markers on linkage group 2 (LG2 ), others are genetically undistinguishable from females. We analysed with RADseq markers one family from a Swiss lowland population with no differentiated sex chromosomes, and where sibship analyses had failed to detect any association between the phenotypic sex of progeny and parental haplotypes. Offspring were reared in a common tank in outdoor conditions and sexed at the froglet stage. We could map a total of 2177 SNPs (1123 in the mother, 1054 in the father), recovering in both adults 13 linkage groups (= chromosome pairs) that were strongly syntenic to Xenopus tropicalis despite > 200 My divergence. Sexes differed strikingly in the localization of crossovers, which were uniformly distributed in the female but limited to chromosome ends in the male. None of the 2177 markers showed significant association with offspring sex. Considering the very high power of our analysis, we conclude that sex determination was not genetic in this family; which factors determined sex remain to be investigated.
Resumo:
Water withdrawal from Mediterranean reservoirs in summer is usually very high. Because of this, stratification is often continuous and far from the typical two-layered structure, favoring the excitation of higher vertical modes. The analysis of wind, temperature, and current data from Sau reservoir (Spain) shows that the third vertical mode of the internal seiche (baroclinic mode) dominated the internal wave field at the beginning of September 2003. We used a continuous stratification two-dimensional model to calculate the period and velocity distribution of the various modes of the internal seiche, and we calculated that the period of the third vertical mode is ;24 h, which coincides with the period of the dominating winds. As a result of the resonance between the third mode and the wind, the other oscillation modes were not excited during this period
Resumo:
We investigated convection caused by surface cooling and mixing attributable to wind shear stress and their roles as agents for the transport of phytoplankton cells in the water column by carrying out two daily surveys during the stratified period of the Sau reservoir. Green algae, diatoms, and cryptophyceae were the dominant phytoplankton communities during the surveys carried out in the middle (July) and end (September) of the stratified period. We show that a system with a linear stratification and that is subject to weak surface forcing, with weak winds , < 4 m S (-1) and low energy dissipation rate values of the order of 1028 m2 s23 or lower, enables the formation of thin phytoplankton layers. These layers quickly disappear when water parcels mix because there is a medium external forcing (convection) induced by the night surface cooling, which is characterized by energy dissipation rates on the order of , 5x10(-8)m2s(-3). During both surveys the wind generated internal waves during the entire diurnal cycle. During the day, and because of the weak winds, phytoplankton layers rise in the water column up to a depth determined by both solar heating and internal waves. In contrast, during the night phytoplankton mixes down to a depth determined by both convection and internal waves. These internal waves, together with the wind-driven current generated at the surface, seem to be the agents responsible for the horizontal transport of phytoplankton across the reservoir.
Resumo:
Peer-reviewed
Resumo:
Peer-reviewed
Resumo:
The aim of this paper is to provide a formal framework for designing highly focused fields with specific transversal features when the incoming beam is partially polarized. More specifically, we develop a field with a transversal component that remains unpolarized in the focal area. Moreover, its longitudinal component exhibits non-zero values on axis. Special attention is paid to the design of the input beam and the development of the experiment. The implementation of such fields is possible by using an interferometric setup combined with the use of digital holography techniques. Experimental results are compared with those obtained numerically.
Resumo:
The Alhama de Murcia fault is a 85 km long oblique-slip fault, and is related to historical and instrumental seismic activity. A paleoseismic analysis of the Lorca-Totana sector of the fault containing MSK I=VIII historical earthquakes was made in order to identify and quantify its seismic potential. We present 1) the results of the neotectonic, structural and geomorphological analyses and, 2) the results of trenching. In the study area, the Alhama de Murcia fault forms a depressed corridor between two strands, the northwestern fault with morphological and structural features of a reverse component of slip, bounding the La Tercia range to the South, and the southeastern fault strand with evidence of sinistral oblique strike-slip movement. The offset along this latter fault trapped the sediments in transit from the La Tercia range towards the Guadalentín depression. The most recent of these sediments are arranged in three generations of alluvial fans and terraces. The first two trenches were dug in the most recent sediments across the southeastern fault strand. The results indicate a coseismic reverse fault deformation that involved the sedimentary sequence up to the intermediate alluvial fan and the Holocene terrace deposits. The sedimentary evolution observed in the trenches suggests an event of temporary damming of the Colmenar creek drainage to the South due to uplifting of the hanging wall during coseismic activation of the fault. Trench, structural and sedimentological features provide evidence of at least three coseismic events, which occurred after 125,000 yr. The minimum vertical slip rate along the fault is 0.06 mm/yr and the average recurrence period should not exceed 40,000 yr in accordance with the results obtained by fan topographic profiling. Further absolute dating is ongoing to constrain these estimates.
Resumo:
As wireless communications evolve towards heterogeneousnetworks, mobile terminals have been enabled tohandover seamlessly from one network to another. At the sametime, the continuous increase in the terminal power consumptionhas resulted in an ever-decreasing battery lifetime. To that end,the network selection is expected to play a key role on howto minimize the energy consumption, and thus to extend theterminal lifetime. Hitherto, terminals select the network thatprovides the highest received power. However, it has been provedthat this solution does not provide the highest energy efficiency.Thus, this paper proposes an energy efficient vertical handoveralgorithm that selects the most energy efficient network thatminimizes the uplink power consumption. The performance of theproposed algorithm is evaluated through extensive simulationsand it is shown to achieve high energy efficiency gains comparedto the conventional approach.
Resumo:
5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen component of Ayahuasca, an Amazonian beverage traditionally used for ritual, religious and healing purposes that is being increasingly used for recreational purposes in US and Europe. 5MeO-DMT is of potential interest for schizophrenia research owing to its hallucinogenic properties. Two other psychotomimetic agents, phencyclidine and 2,5-dimethoxy-4-iodo-phenylisopropylamine (DOI), markedly disrupt neuronal activity and reduce the power of low frequency cortical oscillations (<4 Hz, LFCO) in rodent medial prefrontal cortex (mPFC). Here we examined the effect of 5-MeO-DMT on cortical function and its potential reversal by antipsychotic drugs. Moreover, regional brain activity was assessed by blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). 5-MeO-DMT disrupted mPFC activity, increasing and decreasing the discharge of 51 and 35% of the recorded pyramidal neurons, and reducing (−31%) the power of LFCO. The latter effect depended on 5-HT1A and 5-HT2A receptor activation and was reversed by haloperidol, clozapine, risperidone, and the mGlu2/3 agonist LY379268. Likewise, 5-MeO-DMT decreased BOLD responses in visual cortex (V1) and mPFC. The disruption of cortical activity induced by 5-MeO-DMT resembles that produced by phencyclidine and DOI. This, together with the reversal by antipsychotic drugs, suggests that the observed cortical alterations are related to the psychotomimetic action of 5-MeO-DMT. Overall, the present model may help to understand the neurobiological basis of hallucinations and to identify new targets in antipsychotic drug development.
Resumo:
It is shown that Lotka-Volterra interaction terms are not appropriate to describe vertical cultural transmission. Appropriate interaction terms are derived and used to compute the effect of vertical cultural transmission on demic front propagation. They are also applied to a specific example, the Neolithic transition in Europe. In this example, it is found that the effect of vertical cultural transmission can be important (about 30%). On the other hand, simple models based on differential equations can lead to large errors (above 50%). Further physical, biophysical, and cross-disciplinary applications are outlined
Resumo:
The behavior of the nuclear power plants must be known in all operational situations. Thermal hydraulics computer applications are used to simulate the behavior of the plants. The computer applications must be validated before they can be used reliably. The simulation results are compared against the experimental results. In this thesis a model of the PWR PACTEL steam generator was prepared with the TRAC/RELAP Advanced Computational Engine computer application. The simulation results can be compared against the results of the Advanced Process Simulator analysis software in future. Development of the model of the PWR PACTEL vertical steam generator is introduced in this thesis. Loss of feedwater transient simulation examples were carried out with the model.
Resumo:
Currently, the physiotherapists use the phonoforesis, which consists in the therapeutical ultrasound (US) used to increase the drug molecules migration through the skin, however, the US can shows oxidative effects, and is used, for example, in chemical reactions acceleration. The present study aimed to perform the electrochemical evaluation and the diffusion investigation of gel/caffeine 5% solutions submitted to therapeutical US (continuous mode, 1.0 W cm-2 and 1 MHz). It this study, it has been verified diffusion increase and a possible oxidation of the caffeine molecules, when subjected to therapeutical US.
Resumo:
The purpose of this study was to develop a rapid, simple and sensitive quantitation method for pseudoephedrine (PSE), paracetamol (PAR) and loratadine (LOR) in plasma and pharmaceuticals using liquid chromatography-tandem mass spectrometry with a monolithic column. Separation was achieved using a gradient composition of methanol-0.1% formic acid at a flow rate of 1.0 mL min-1. Mass spectral transitions were recorded in SRM mode. System validation was evaluated for precision, specificity and linearity. Limit of detection for pseudoephedrine, paracetamol, and loratadine were determined to be 3.14, 1.86 and 1.44 ng mL-1, respectively, allowing easy determination in plasma with % recovery of 93.12 to 101.56%.