935 resultados para Vanderbilt Cup Races
Resumo:
Limited data on cervical auscultation (CA) sounds in normal swallows of various food and fluid textures during the transitional feeding period of 4-36 months exists. This study documents the acoustic and perceptual parameters of swallowing sounds in healthy children aged 4–36 months over a range of food and fluid consistencies.
Resumo:
Cervical auscultation (CA) may be used to complement the clinical feeding examination when assessing for oropharyngeal aspiration (OPA). Data exists on the acoustic properties of normal and abnormal swallowing sounds in adults and children. However, there are no published paediatric studies comparing the acoustic properties of sounds comparing OPA with non-OPA swallows. We aimed to determine if there is an acoustic difference between modified barium swallow (MBS)-identified OPA and non-OPA swallow sounds in children.
Resumo:
Aims: We report on the outcome of the Exeter Contemporary flanged cemented all-polyethylene acetabular component with a mean follow-up of 12 years (10 to 13.9). This study reviewed 203 hips in 194 patients. 129 hips in 122 patients are still in situ; 66 hips in 64 patients were in patients who died before ten years, and eight hips (eight patients) were revised. Clinical outcome scores were available for 108 hips (104 patients) and radiographs for 103 hips (100 patients). Patients and Methods: A retrospective review was undertaken of a consecutive series of 203 routine primary cemented total hip arthroplasties (THA) in 194 patients. Results: There were no acetabular component revisions for aseptic loosening. Acetabular revision was undertaken in eight hips. In four hips revision was necessitated by periprosthetic femoral fractures, in two hips by recurrent dislocation, in one hip for infection and in one hip for unexplained ongoing pain. Oxford and Harris hip scores demonstrated significant clinical improvement (all p < 0.001). Radiolucent lines were present in 37 (36%) of the 103 acetabular components available for radiological evaluation. In 27 of these, the line was confined to zone 1. No component had migrated. Conclusion: Kaplan–Meier survivorship, with revision for aseptic loosening as the endpoint, was 100% at 12.5 years and for all causes was 97.8% (95% confidence interval 95.6 to 100) when 40 components remained at risk. The Exeter Contemporary flanged cemented acetabular component demonstrates excellent survivorship at 12.5 years. Take home message: The Exeter Contemporary flanged cemented acetabular component has excellent clinical outcomes and survivorship when used with the Exeter stem in total hip arthroplasty.
Resumo:
The object of study in this thesis is Finnish skiing culture and Alpine skiing in particular from the point of view of ethnology. The objective is to clarify how, when, why and by what routes Alpine skiing found its way to Finland. What other phenomena did it bring forth? The objective is essentially linked to the diffusion of modern sports culture to Finland. The introduction of Alpine skiing to Finland took place at a time when skiing culture was changing: flat terrain skiing was abandoned in favour of cross-country skiing in the early decades of the 20th century, and new techniques and equipment made skiing a much more versatile sport. The time span of the study starts from the late 19th century and ends in the mid-20th century. The spatial focus is in Finland. People and communities formed through their actions are core elements in the study of sports and physical activity. Organizations tend to raise themselves into influential actors in the field of physical culture even if active individuals work in their background. Original archive documents and publications of sports organizations are central source material for this thesis, complemented by newspapers and sports magazines as well as photographs and films on early Alpine skiing in Finland. Ever since their beginning in the late 19th century skiing races in Finland had mostly taken place on flat terrain or sea ice. Skiing in broken cross-country terrain made its breakthrough in the 1920 s, at a time when modern skiing techniques were introduced in instruction manuals. In the late 1920 s the Finnish Women s Physical Education Association (SNLL) developed unconventional forms of pedagogical skiing instruction. They abandoned traditional Finnish flat terrain skiing and boldly looked for influences abroad, which caused friction between the leaders of the women s sports movement and the (male) leaders of the central skiing organization. SNLL was instrumental in launching winter tourism in Finnish Lapland in 1933. The Finnish Tourism Society, the State Railways and sports organizations worked in close co-operation to instigate a boom in tourism, which culminated in the inauguration of a tourist hotel at Pallastunturi hill in the winter of 1938. Following a Swedish model, fell-skiing was developed as a domestic counterpart to Alpine skiing as practiced in Central Europe. The first Finnish skiing resorts were built at sites of major cross-country skiing races. Inspired by the slope at Bad Grankulla health spa, the first slalom skiing races and fell-skiing, slalom enthusiasts began to look for purpose-built sites to practice turn technique. At first they would train in natural slopes but in the late 1930 s new slopes were cleared for slalom races and recreational skiing. The building of slopes and ski lifts and the emergence of organized slalom racing competitions gradually separated Alpine skiing from the old fell-skiing. After the Second World War fell-skiing was transformed into ski trekking on marked courses. At the same time Alpine skiing also parted ways with cross-country skiing to become a sport of its own. In the 1940 s and 1950 s Finnish Alpine skiing was almost exclusively a competitive sport. The specificity of Alpine skiing was enhanced by rapid development of equipment: the new skis, bindings and shoes could only be used going downhill.
Resumo:
We consider a variant of the popular matching problem here. The input instance is a bipartite graph $G=(\mathcal{A}\cup\mathcal{P},E)$, where vertices in $\mathcal{A}$ are called applicants and vertices in $\mathcal{P}$ are called posts. Each applicant ranks a subset of posts in an order of preference, possibly involving ties. A matching $M$ is popular if there is no other matching $M'$ such that the number of applicants who prefer their partners in $M'$ to $M$ exceeds the number of applicants who prefer their partners in $M$ to $M'$. However, the “more popular than” relation is not transitive; hence this relation is not a partial order, and thus there need not be a maximal element here. Indeed, there are simple instances that do not admit popular matchings. The questions of whether an input instance $G$ admits a popular matching and how to compute one if it exists were studied earlier by Abraham et al. Here we study reachability questions among matchings in $G$, assuming that $G=(\mathcal{A}\cup\mathcal{P},E)$ admits a popular matching. A matching $M_k$ is reachable from $M_0$ if there is a sequence of matchings $\langle M_0,M_1,\dots,M_k\rangle$ such that each matching is more popular than its predecessor. Such a sequence is called a length-$k$ voting path from $M_0$ to $M_k$. We show an interesting property of reachability among matchings in $G$: there is always a voting path of length at most 2 from any matching to some popular matching. Given a bipartite graph $G=(\mathcal{A}\cup\mathcal{P},E)$ with $n$ vertices and $m$ edges and any matching $M_0$ in $G$, we give an $O(m\sqrt{n})$ algorithm to compute a shortest-length voting path from $M_0$ to a popular matching; when preference lists are strictly ordered, we have an $O(m+n)$ algorithm. This problem has applications in dynamic matching markets, where applicants and posts can enter and leave the market, and applicants can also change their preferences arbitrarily. After any change, the current matching may no longer be popular, in which case we are required to update it. However, our model demands that we switch from one matching to another only if there is consensus among the applicants to agree to the switch. Hence we need to update via a voting path that ends in a popular matching. Thus our algorithm has applications here.
Resumo:
The zinc-finger transcription factors GATA2 and GATA3 in vertebrates belong to the six-member family that are essential regulators in the development of various organs. The aim of this study was to gain new information of the roles of GATA2 and GATA3 in inner ear morphogenesis and of the function of GATA2 in neuronal fate specification in the midbrain using genetically modified mouse and chicken embryos as models. A century ago the stepwise process of inner ear epithelial morphogenesis was described, but the molecular players regulating the cellular differentiation of the otic epithelium are still not fully resolved. This study provided novel data on GATA factor roles in several developmental processes during otic development. The expression analysis in chicken suggested that GATA2 and GATA3 possess redundant roles during otic cup and vesicle formation, but complementary cell-type specific functions during vestibular and cochlear morphogenesis. The comparative analysis between mouse and chicken Gata2 and Gata3 expression revealed many conserved aspects, especially during later stages of inner ear development, while the expression was more divergent at early stages. Namely, expression of both Gata genes was initiated earlier in chicken than mouse otic epithelium relative to the morphogenetic stages. Likewise, important differences concerning Gata3 expression in the otic cup epithelium were detected between mouse and chicken, suggesting that distinct molecular mechanisms regulate otic vesicle closure in different vertebrate species. Temporally distinct Gata2 and Gata3 expression was also found during otic ganglion formation in mouse and chicken. Targeted inactivation of Gata3 in mouse embryos caused aberrant morphology of the otic vesicle that in severe cases was disrupted into two parts, a dorsal and a ventral vesicle. Detailed analyses of Gata3 mutant embryos unveiled a crucial role for GATA3 in the initial inner ear morphogenetic event, the invagination of the otic placode. A large-scale comparative expression analysis suggested that GATA3 could control cell adhesion and motility in otic epithelium, which could be important for early morphogenesis. GATA3 was also identified as the first factor to directly regulate Fgf10 expression in the otic epithelium and could thus influence the development of the semicircular ducts. Despite the serious problems in the early inner ear development, the otic sensory fate establishment and some vestibular hair cell differentiation was observable in pharmacologically rescued Gata3-/- embryos. Cochlear sensory differentiation was, however, completely blocked so that no auditory hair cells were detected. In contrast to the early morphogenetic phenotype in Gata3-/- mutants, conditional inactivation of Gata2 in mouse embryos resulted in a relatively late growth defect of the three semicircular ducts. GATA2 was required for the proliferation of the vestibular nonsensory epithelium to support growing of the three ducts. Concurrently, with the role in epithelial semicircular ducts, GATA2 was also required for the mesenchymal cell clearance from the vestibular perilymphatic region between the membranous labyrinth and bony capsule. The gamma-aminobutyric acid-secreting (GABAergic) neurons in the midbrain are clinically relevant since they contribute to fear, anxiety, and addiction regulation. The molecular mechanisms regulating the GABAergic neuronal development, however, are largely unknown. Using tissue-specific mutagenesis in mice, GATA2 was characterized as a critical determinant of the GABAergic neuronal fate in the midbrain. In Gata2-deficient mouse midbrain, GABAergic neurons were not produced, instead the Gata2-mutant cells acquired a glutamatergic neuronal phenotype. Gain-of-function experiments in chicken also revealed that GATA2 was sufficient to induce GABAergic differentiation in the midbrain.
Resumo:
Taking the various values ascribed to biodiversity as its point of departure rather many years ago, the present study aims at deriving a conservation strategy for Uttara Kannada. This hilly district, with the highest proportion of its area under forests in South India, is divided into five ecological zones: coastal, northern evergreen, southern evergreen, moist deciduous, and dry deciduous. The heavily-populated coastal zone includes mangrove forests and estuarine wetlands. The evergreen forests are particularly rich in the diversity of plant species which they support - including wild relatives of a number of cultivated plants. They also serve a vital function in watershed conservation. The moist deciduous forests are rich in bird species; both moist and dry deciduous forests include a number of freshwater ponds and lakes that support a high diversity of aquatic birds.Reviewing the overall distribution of biodiversity, we identify specific localities - including estuaries, evergreen forests, and moist deciduous forests - which should be set aside as Nature reserves. These larger reserves must be complemented by a network of traditionally-protected sacred groves and sacred trees that are distributed throughout the district and that protect today, for instance, the finest surviving stand of dipterocarp trees.We also spell out the necessary policy-changes in overall development strategy that should stem the ongoing decimation of biodiversity. These include (1) revitalizing community-based systems of sustainable management of village forests and protection of sacred groves and trees; (2) reorienting the usage-pattern of reserve forests from production of a limited variety of timber and softwood species for industrial consumers, to production of a larger diversity of non-wood forest produce of commercial value to support the rural economy; (3) utilizing marginal lands under private ownership for generating industrial wood supplies; and (4) provision of incentives for in situ maintenance of land-races of cultivated plants - especially evergreen, fruit-yielding trees - by the local people.It is proposed that this broad framework be now taken to the local communities, and that an action-plan be developed on the basis of inputs provided - and initiatives taken - by them.
Resumo:
This paper critically appraises the limitations of the liquid-limit water content of clayey soils determined conventionally either by percussion cup or by the cone penetration method. It is shown that the conventional liquid limit and plastic limit are arbitrary, strength-based water contents and that they cannot represent the plasticity limits, and that the state of the soil-water system at the conventional liquid limit does not correspond to a stress-free reference state. The present investigation identifies three characteristic limiting water contents for a soil-water system which have well-defined, unique mechanisms controlling them, namely the free swell limit, settling limit and shrinkage limit. Simple procedures for the determination of the free swell limit and settling limit of natural soils are presented. The settling limit is shown to be the 'real liquid limit' of any clayey soil. With a number of experimental illustrations, it is clearly shown that the settling limit represents the maximum water-holding capacity of clayey soils and that it corresponds to the stress-free reference state.
Resumo:
Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level.
Resumo:
The possibility of establishing an accurate relative chronology of the early solar system events based on the decay of short-lived Al-26 to Mg-26 (half-life of 0.72 Myr) depends on the level of homogeneity (or heterogeneity) of Al-26 and Mg isotopes. However, this level is difficult. to constrain precisely because of the very high precision needed for the determination of isotopic ratios, typically of +/- 5 ppm. In this study, we report for the first time a detailed analytical protocol developed for high precision in situ Mg isotopic measurements ((25)mg/(24)mg and (26)mg/Mg-24 ratios, as well as Mg-26 excess) by MC-SIMS. As the data reduction process is critical for both accuracy and precision of the final isotopic results, factors such as the Faraday cup (FC) background drift and matrix effects on instrumental fractionation have been investigated. Indeed these instrumental effects impacting the measured Mg-isotope ratios can be as large or larger than the variations we are looking for to constrain the initial distribution of Al-26 and Mg isotopes in the early solar system. Our results show that they definitely are limiting factors regarding the precision of Mg isotopic compositions, and that an under- or over-correction of both FC background instabilities and instrumental isotopic fractionation leads to important bias on delta Mg-25, delta(26)mg and Delta Mg-26 values (for example, olivines not corrected for FC background drifts display Delta Mg-26 values that can differ by as much as 10 ppm from the truly corrected value). The new data reduction process described here can then be applied to meteoritic samples (components of chondritic meteorites for instance) to accurately establish their relative chronology of formation.
Resumo:
Programming environments for smartphones expose a concurrency model that combines multi-threading and asynchronous event-based dispatch. While this enables the development of efficient and feature-rich applications, unforeseen thread interleavings coupled with non-deterministic reorderings of asynchronous tasks can lead to subtle concurrency errors in the applications. In this paper, we formalize the concurrency semantics of the Android programming model. We further define the happens-before relation for Android applications, and develop a dynamic race detection technique based on this relation. Our relation generalizes the so far independently studied happens-before relations for multi-threaded programs and single-threaded event-driven programs. Additionally, our race detection technique uses a model of the Android runtime environment to reduce false positives. We have implemented a tool called DROIDRACER. It generates execution traces by systematically testing Android applications and detects data races by computing the happens-before relation on the traces. We analyzed 1 5 Android applications including popular applications such as Facebook, Twitter and K-9 Mail. Our results indicate that data races are prevalent in Android applications, and that DROIDRACER is an effective tool to identify data races.
Resumo:
The leaf surface usually stays flat, maintained by coordinated growth. Growth perturbation can introduce overall surface curvature, which can be negative, giving a saddle-shaped leaf, or positive, giving a cup-like leaf. Little is known about the molecular mechanisms that underlie leaf flatness, primarily because only a few mutants with altered surface curvature have been isolated and studied. Characterization of mutants of the CINCINNATA-like TCP genes in Antirrhinum and Arabidopsis have revealed that their products help maintain flatness by balancing the pattern of cell proliferation and surface expansion between the margin and the central zone during leaf morphogenesis. On the other hand, deletion of two homologous PEAPOD genes causes cup-shaped leaves in Arabidopsis due to excess division of dispersed meristemoid cells. Here, we report the isolation and characterization of an Arabidopsis mutant, tarani (tni), with enlarged, cup-shaped leaves. Morphometric analyses showed that the positive curvature of the tni leaf is linked to excess growth at the centre compared to the margin. By monitoring the dynamic pattern of CYCLIN D3;2 expression, we show that the shape of the primary arrest front is strongly convex in growing tni leaves, leading to excess mitotic expansion synchronized with excess cell proliferation at the centre. Reduction of cell proliferation and of endogenous gibberellic acid levels rescued the tni phenotype. Genetic interactions demonstrated that TNI maintains leaf flatness independent of TCPs and PEAPODs.
Resumo:
Subtle concurrency errors in multithreaded libraries that arise because of incorrect or inadequate synchronization are often difficult to pinpoint precisely using only static techniques. On the other hand, the effectiveness of dynamic race detectors is critically dependent on multithreaded test suites whose execution can be used to identify and trigger races. Usually, such multithreaded tests need to invoke a specific combination of methods with objects involved in the invocations being shared appropriately to expose a race. Without a priori knowledge of the race, construction of such tests can be challenging. In this paper, we present a lightweight and scalable technique for synthesizing precisely these kinds of tests. Given a multithreaded library and a sequential test suite, we describe a fully automated analysis that examines sequential execution traces, and produces as its output a concurrent client program that drives shared objects via library method calls to states conducive for triggering a race. Experimental results on a variety of well-tested Java libraries yield 101 synthesized multithreaded tests in less than four minutes. Analyzing the execution of these tests using an off-the-shelf race detector reveals 187 harmful races, including several previously unreported ones.
Resumo:
Tensile experiments on cold-drawn Ni microwires with diameters from similar to 115 to 50 gm revealed high strengths, with significant strength variability for finer wires with diameters less than similar to 50 gm. The wires showed pronounced necking at fracture. The coarser wires with diameters > 50 mu m exhibited conventional ductile cup-cone fracture, with dimples in the central zone and peripheral shear lips, whereas finer wires failed by shear with knife or chisel-edge fractures. Shear bands were observed in all samples. Further, through- section microscopy of selected fractured samples revealed that the shear bands did not go across the enitre specimen for the coarser wires. The shear bands led to grain fragmention, with a reduction in grain aspect ratio as well as rotations away from the initial < 111 > orientations. The strength data were analysed based on a Weibull approach. The data could be rationalized in terms of failure from volume defects in coarser wires, with a high Weibull modulus, and from surface defects in finer wires, with a low Weibull modulus and greater variability. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
El presente trabajo se realizó en el Programa adscrito a la Universidad Nacional Agraria, con el objetivo de estudiar el método de conservación in vitro a tasa mínimas de crecimiento en el cultivo de camote (Ipomoea batatas (L.) Lam.) clon N-1437, se procedió a inocular bajo condiciones de asepsia total, microesquejes entre 3 y 4 mm de longitud aproximadamente, conteniendo una yema axilar. En la evaluación final a las 16 semanas, se observó que en los tratamientos con 10 y 15 g/1 de manitol las variables altura, número de hojas y número de raíces presentaron menores valores de incremento mensual comparados con los alcanzados en los tratamientos testigo y a 5 g/1 de manitol, además se determinó que en el tratamiento testigo hubo mejores resultados en cuanto a la sobrevivencia de los tejidos en el 100%, menor formación de callo en un 5%, vitrificación 10% y en la coloración verde oscuro de las hojas en un 65% de las plántulas. En los tratamientos testigo y dilución de las sales MS, resultó que al 50% de dilución el incremento mensual presento valores intermedios en las variables altura de la plántula y número de hojas, pero el número de raíces fue menor presentando valores de 0.16 cm, 0.95 y 0.56 respectivamente. La sobrevivencia de los tejidos fue del 100%, no se presentó formación de callo ni vitrificación y la coloración verde oscuro de las hojas fue del 90%. Aun cuando el manitol fue efectivo en la reducción de la tasa presentaron morfológico de crecimiento efectos menos y fisiológico, deseables en el comparado con el aspecto efecto producido por las diluciones de las sales Ms.