979 resultados para Transducer Excitation
Resumo:
Environmental effects on the concentration of photosynthetic pigments in micro-algae can be explained by dynamics of photosystem synthesis and deactivation. A model that couples photosystem losses to the relative cellular rates of energy harvesting (light absorption) and assimilation predicts optimal concentrations of light-harvesting pigments and balanced energy flow under environmental conditions that affect light availability and metabolic rates. Effects of light intensity, nutrient supply and temperature on growth rate and pigment levels were similar to general patterns observed across diverse micro-algal taxa. Results imply that dynamic behaviour associated with photophysical stress, and independent of gene regulation, might constitute one mechanism for photo-acclimation of photosynthesis.
Resumo:
The stationary lineshape of a two-level atom driven by low-intensity narrow-bandwidth squeezed light is shown to exhibit significant differences in behaviour compared to the lineshape for broadband squeezed light. We find that for narrow-bandwidth squeezed light the lineshape is composed of two Lorentzians whose amplitudes depend on the squeezing correlations. Moreover, one of the Lorentzians has a negative weight which leads to narrowing of the line. These features are absent in the broadband case, where the stationary lineshape is the same as for a thermal field. (C) 1998 Elsevier Science B.V.
Resumo:
We consider one source of decoherence for a single trapped ion due to intensity and phase fluctuations in the exciting laser pulses. For simplicity we assume that the stochastic processes involved are white noise processes, which enables us to give a simple master equation description of this source of decoherence. This master equation is averaged over the noise, and is sufficient to describe the results of experiments that probe the oscillations in the electronic populations as energy is exchanged between the internal and electronic motion. Our results are in good qualitative agreement with recent experiments and predict that the decoherence rate will depend on vibrational quantum number in different ways depending on which vibrational excitation sideband is used.
Resumo:
The Mellow and Autler-Townes probe absorption spectra of a three-level atom in a cascade configuration with the lower transition coherently driven and also coupled to a narrow bandwidth squeezed-vacuum field are studied. Analytical studies of the modifications caused by the finite squeezed-vacuum bandwidth to the spectra are made for the case when the Rabi frequency of the driving field is much larger than the natural linewidth. The squeezed vacuum center frequency and the driving laser frequency are assumed equal. We show that the spectral features depend on the bandwidth of a squeezed vacuum field and whether the sources of the squeezing field are degenerate (DPA) or nondegenerate (NDPA) parametric amplifiers. In a broadband or narrow bandwidth squeezed vacuum generated by a NDPA, the central component of the Mellow spectrum can be significantly narrower than that in the normal vacuum. When the source of the squeezed vacuum is a DPA, the central feature is insensitive to squeezing. The Rabi sidebands, however, can be significantly narrowed only in the squeezed vacuum produced by the DPA. The two lines of the Autler-Townes absorption spectrum can be narrowed only in a narrow bandwidth squeezed vacuum, whereas they are independent of the phase and are always broadened in a broadband squeezed vacuum.
Resumo:
The low temperature electronic spectrum of Cu(II) doped Cs2ZrCl6 is reported. It is found that Cu(II) is incorporated as the square planar copper tetrachloride ion, CuCl42-, which substitutes at the Zr(IV) site in the Cs2ZrCl6 lattice. There is a complete absence of axial coordination. The optical spectrum shows vibronic structure with peak widths as small as 8 cm(-1), far narrower than previously seen for this ion. The energy of the observed transitions and the Franck-Condon intensity pattern suggest that there is a substantial relaxation of the host lattice about the impurity ion. The relative intensity of the magnetic dipole component of the bands appears to be considerably greater than for pure copper(II) compounds containing the CuCl42- ion. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Hydromorphone-3-glucuronide (H3G) was synthesized biochemically using rat liver microsomes, uridine-5'-diphosphoglucuronic acid (UDPGA) and the substrate, hydromorphone. Initially, the crude putative H3G product was purified by ethyl acetate precipitation and washing with acetonitrile, Final purification was achieved using semi-preparative high-performance-liquid-chromatography (HPLC) with ultraviolet (UV) detection. The purity of the final H3G product was shown by HPLC with electrochemical and ultraviolet detection to be > 99.9% and it was produced in a yield of approximate to 60% (on a molar basis). The chemical structure of the putative H3G was confirmed by enzymatic hydrolysis of the glucuronide moiety using P-glucuronidase, producing a hydrolysis product with the same HPLC retention time as the hydromorphone reference standard. Using HPLC with tandem mass spectrometry (HPLC-MS-MS) in the positive ionization mode, the molecular mass (M+1) was found to be 462 g/mol, in agreement with H3G's expected molecular weight of 461 g/mol. Importantly, proton-NMR indicated that the glucuronide moiety was attached at the 3-phenolic position of hydromorphone. A preliminary evaluation of H3G's intrinsic pharmacological effects revealed that following icy administration to adult male Sprague-Dawley rats in a dose of 5 mu g, H3G evoked a range of excitatory behavioural effects.including chewing, rearing, myoclonus, ataxia and tonic-clonic convulsions, in a manner similar to that reported previously for the glucuronide metabolites of morphine, morphine-3-glucuronide and normorphine-3-glucuronide.
Resumo:
We study the behavior of a two-level atom that is driven by a bichromatic field consisting of a strong resonant component and a weaker tunable component. In addition to the splitting of the energy levels (the multiphoton AC Stark effect), we find that the weaker component also shifts the subharmonic resonances, an effect we attribute to a dynamic Stark shift. When the weaker component is tuned to a shifted resonance, no fluorescence occurs at either the frequency of the strong component or the three-photon mixing frequency. Results are obtained with numerical techniques and explained in terms of the dressed-atom model of the system. (C) 1998 Optical Society of America [S0740-3224(98)01508-2] OCIS codes: 270.4180, 270.6620, 270.0270.
Resumo:
We analyze the linewidth narrowing in the fluorescence spectrum of a two-level atom driven by a squeezed vacuum field of a finite bandwidth. It is found that the fluorescence spectrum in a low-intensity squeezed field can exhibit a (omega - omega(0))(-6) frequency dependence in the wings. We show that this fast fall-off behavior is intimately related to the properties of a narrow-bandwidth squeezed field and does not extend into the region of broadband excitation. We apply the Linear response model and find that the narrowing results from a convolution of the atom response with the spectrum of the incident field. On the experimental side, we emphasize that the linewidth narrowing is not sensitive to the solid angle of the squeezed modes coupled to the atom. We also compare the fluorescence spectrum with the quadrature-noise spectrum and find that the fluorescence spectrum for an off-resonance excitation does not reveal the noise spectrum. We show that this difference arises from the competing three-photon scattering processes. [S1050-2947(98)04308-X].
Resumo:
We modified the noninvasive, in vivo technique for strain application in the tibiae of rats (Turner et al,, Bone 12:73-79, 1991), The original model applies four-point bending to right tibiae via an open-loop, stepper-motor-driven spring linkage, Depending on the magnitude of applied load, the model produces new bone formation at periosteal (Ps) or endocortical surfaces (Ec.S). Due to the spring linkage, however, the range of frequencies at which loads can be applied is limited. The modified system replaces this design with an electromagnetic vibrator. A load transducer in series with the loading points allows calibration, the loaders' position to be adjusted, and cyclic loading completed under load central as a closed servo-loop. Two experiments were conducted to validate the modified system: (1) a strain gauge was applied to the lateral surface of the right tibia of 5 adult female rats and strains measured at applied loads from 10 to 60 N; and (2) the bone formation response was determined in 28 adult female Sprague-Dawley rats. Loading was applied as a haversine wave with a frequency of 2 Hz for 18 sec, every second day for 10 days. Peak bending loads mere applied at 33, 40, 52, and 64 N, and a sham-loading group tr as included at 64 N, Strains in the tibiae were linear between 10 and 60 N, and the average peak strain at the Ps.S at 60 N was 2664 +/- 250 microstrain, consistent with the results of Turner's group. Lamellar bone formation was stimulated at the Ec.S by applied bending, but not by sham loading. Bending strains above a loading threshold of 40 N increased Ec Lamellar hone formation rate, bone forming surface, and mineral apposition rate with a dose response similar to that reported by Turner et al, (J Bone Miner Res 9:87-97, 1994). We conclude that the modified loading system offers precision for applied loads of between 0 and 70 N, versatility in the selection of loading rates up to 20 Hz, and a reproducible bone formation response in the rat tibia, Adjustment of the loader also enables study of mechanical usage in murine tibia, an advantage with respect to the increasing variety of transgenic strains available in bone and mineral research. (Bone 23:307-310; 1998) (C) 1998 by Elsevier Science Inc. All rights reserved.
Resumo:
Objective: To investigate a proposed model in which manipulative therapy produces a treatment-specific initial hypoalgesic and sympathoexcitatory effect by activating a descending pain inhibitory system. The a priori hypothesis tested was that manipulative therapy produces mechanical hypoalgesia and sympatho-excitation beyond that produced by placebo or control. Furthermore, these effects would be correlated, thus supporting the proposed model. Design: A randomized, double-blind, placebo-controlled, repeated-measures study of the initial effect of treatment. Setting: Clinical neurophysiology laboratory. Subjects: Twenty-four subjects (13 women and 11 men; mean age, 49 yr) with chronic lateral epicondylalgia (average duration, 6.2 months). Intervention: Cervical spine lateral glide oscillatory manipulation, placebo and control. Outcome Measures: Pressure pain threshold, thermal pain threshold, pain-free grip strength test, upper limb tension test 2b, skin conductance, pileous and glabrous skin temperature and blood flux. Results: Treatment produced hypoalgesic and sympathoexcitatory changes significantly grater than those of placebo and control (p < .03). Confirmatory factor-analysis modeling, which was performed on the pain-related measures and the indicators of sympathetic nervous system function, demonstrated a significant correlation (r = .82) between the latencies of manipulation-induced hypoalgesia and sympathoexcitation. The Lagrange Multiplier test and Wald test indicated that the two latent factors parsimoniously and appropriately represented their observed variables. Conclusions: Manual therapy produces a treatment-specific initial hypoalgesic and sympathoexcitatory effect beyond that of placebo or control. The strong correlation between hypoalgesic and sympathoexcitatory effects suggests that a central control mechanism might be activated by manipulative therapy.
Resumo:
We study the spectral and noise properties of the fluorescence field emitted from a two-level atom driven by a beam of squeezed light. For a weak driving field we derive simple analytical formulae for the fluorescence and quadrature-noise spectra which are valid for an arbitrary bandwidth of the squeezed field. We analyse the spectra in the regime where the squeezing bandwidth is smaller or comparable to the atomic linewidth, the area where non-Markovian effects are important. We emphasize that there is a noticable difference between the fluorescence spectra for the thermal and squeezed field excitations. In both cases the spectrum can be narrower than any bandwidth involved in the process. However, as we point out for the squeezed driving field the linewidth narrowing, being much larger than in the thermal-field case, can be attributed to the squeezing of the fluctuations in the driving held. We also calculate the quadrature-noise spectrum of the emitted fluorescence, and find that for a detuned squeezed field the fluorescence spectrum does not reveal the quadrature-noise spectrum. In contrast to the fluorescence spectrum having two peaks, the quadrature-noise spectrum exhibits three peaks. We explain this difference as arising from the competiting three-photon scattering processes. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A simple method for the measurement of pindolol enantiomers by HPLC is presented. Alkalinized serum or urine is extracted with ethyl acetate and the residue remaining after evaporation of the organic layer is then derivatised with (S)-(-)-alpha-methylbenzyl isocyanate. The diastereoisomers of derivatised pindolol and metoprolol (internal standard) are separated by high-performance liquid chromatography (HPLC) using a C-18 silica column and detected using fluorescence (excitation lambda: 215 nm, emission lambda: 320 nm). The assay displays reproducible linearity for pindolol enantiomers with a correlation coefficient of r(2) greater than or equal to 0.998 over the concentration range 8-100 ng ml(-1) for plasma and 0.1-2.5 mu g ml(-1) for urine. The coefficient of variation for accuracy and precision of the quality control samples for both plasma and urine are consistently
Resumo:
A sensitive high-performance liquid chromatographic assay has been developed for measuring plasma concentrations of methotrexate and its major metabolite, 7-hydroxymethotrexate. Methotrexate and metabolite were extracted from plasma using solid-phase extraction. An internal standard, aminopterin was used. Chromatographic separation was achieved using a 15-cm poly(styrene-divinylbenzene) (PRP-1(R)) column. This column is more robust than a silica-based stationary phase. Post column, the eluent was irradiated with UV light, producing fluorescent photolytic degradation products of methotrexate and the metabolite. The excitation and emission wavelengths of fluorescence detection were at 350 and 435 nm, respectively. The mobile phase consisted of 0.1 M phosphate buffer (pH 6.5), with 6% N,N-dimethylformamide and 0.2% of 30% hydrogen peroxide. The absolute recoveries for methotrexate and 7-hydroxymethotrexate were greater than 86%. Precision, expressed as a coefficient of variation (n=6), was
Resumo:
Site selective luminescence and magnetic circular dichroism experiments on Cr4+-doped yttrium aluminum garnet and yttrium gallium garnet have been made at low temperature. The spectral assignments for these near-IR lasing materials have been made using experimental data and ligand field calculations guided by the known geometry of the lattices. [S0163-1829(99)07003-4].
Resumo:
We consider the effect of quantum spin fluctuations on the ground-state properties of the Heisenberg antiferromagnet on an anisotropic triangular lattice using linear spin-wave (LSW) theory. This model should describe the magnetic properties of the insulating phase of the kappa-(BEDT-TTF)(2)X family of superconducting molecular crystals. The ground-state energy, the staggered magnetization, magnon excitation spectra, and spin-wave velocities are computed as functions of the ratio of the antiferromagnetic exchange between the second and first neighbours, J(2)/J(1). We find that near J(2)/J(1) = 0.5, i.e., in the region where the classical spin configuration changes from a Neel-ordered phase to a spiral phase, the staggered magnetization vanishes, suggesting the possibility of a quantum disordered state. in this region, the quantum correction to the magnetization is large but finite. This is in contrast to the case for the frustrated Heisenberg model on a square lattice, for which the quantum correction diverges logarithmically at the transition from the Neel to the collinear phase. For large J(2)/J(1), the model becomes a set of chains with frustrated interchain coupling. For J(2) > 4J(1), the quantum correction to the magnetization, within LSW theory, becomes comparable to the classical magnetization, suggesting the possibility of a quantum disordered state. We show that, in this regime, the quantum fluctuations are much larger than for a set of weakly coupled chains with non-frustrated interchain coupling.