991 resultados para TECHNOLOGICAL DEVELOPMENT
Resumo:
We propose an algorithm that extracts image features that are consistent with the 3D structure of the scene. The features can be robustly tracked over multiple views and serve as vertices of planar patches that suitably represent scene surfaces, while reducing the redundancy in the description of 3D shapes. In other words, the extracted features will off er good tracking properties while providing the basis for 3D reconstruction with minimum model complexity
Resumo:
RESUMEN: La emergencia de nuevas ciencias y tecnologías vienen acompañadas de nuevas dinámicas en la producción, el uso y la diseminación de nuevos conocimientos científicos y tecnológicos. Estas nuevas dinámicas se reflejan en la reorganización de las actividades científicas, en la creación o la reorientación de nuevas temáticas en la investigación, en la emergencia de nuevas preocupaciones y debates sobre los riesgos e implicaciones sociales, y en la participación de nuevos actores en el desarrollo de la ciencia y la tecnología, entre otros factores. En este artículo se presentan los resultados del estudio sobre las funciones de un organismo con orígenes filantrópicos y no gubernamental que ha sido central en el desarrollo de los sistemas microelectromecánicos (MEMS) en México. Las funciones que se analizan han sido y son desarrolladas en las diferentes etapas del desarrollo de esta tecnología emergente en este país. Además de mostrar las funciones desempeñadas por este tipo de organismo, este texto se cuestiona sobre la modelización de las relaciones entre las diferentes entidades presentes en el desarrollo e instalación de nuevas tecnologías. En las conclusiones intentamos avanzar algunos elementos para tomar en cuenta estos organismos y enriquecer los estudios sociales sobre las nuevas ciencias y tecnologías. ABSTRACT: The emergence of new sciences and technologies come with new dynamics in the production, use and dissemination of new scientific and technological knowledge. These new dynamics are reflected in the reorganization of scientific activities, in creating or redirecting new topics in research, in the emergence of new concerns and debates about the risks and social implications, and the participation of new actors in the development of science and technology, among other factors. This article presents the results of the study on the functions of an organism with philanthropic and non-governmental sources that has been central to the development of microelectromechanical systems (MEMS) in Mexico. The functions have been discussed and are developed at different stages of development of this emerging technology in this country. In addition to showing the functions of such a body, this text is questioned on modeling the relationships between the various entities in the development and deployment of new technologies. In the conclusions we try moving some elements to take into account these organisms and enrich social studies on the new sciences and technologies.
Resumo:
George Gaskell and colleagues designed, analysed and interpreted the Eurobarometer 73.1 on the Life Sciences and Biotechnology as part of the research project Sensitive Technologies and European Public Ethics (STEPE), funded by the Science in Society Programme of the EC’s Seventh Framework Programme for Research and Technological Development (FP7).
Resumo:
Este PFM se enmarca dentro del trabajo a realizar por el proyecto IRATI. IRATI es un proyecto STReP (Specific Targeted Research Project) financiado por la Unión Europea dentro del programa FP7 (Seventh Framework Programme for Research and Technological Development). El objetivo general de IRATI es conseguir una mayor compresión y exploración de RINA. El trabajo que se reportará en este PFM es (aproximadamente) la primera fase del diseño y desarrollo de un prototipo de RINA sobre Ethernet en el seno del Kernel (Linux), basándose y generando software libre.
Resumo:
This article summarizes the main achievementsof the Multi-Element Transmit andReceive Antennas (METRA) Project, an ISTresearch and technological development project carried out between January 2000 and June 2001 by Universitat Politècnica de Catalunya, the Center for Personkommunikation of Aalborg University, Nokia Networks, Nokia Mobile Phones, and Vodafone Group Research and Development.The main objective of METRA was the performanceevaluation of multi-antenna terminals incombination with adaptive antennas at the basestation in UMTS communication systems. 1 AMIMO channel sounder was developed that providedrealistic multi-antenna channel measurements.Using these measured data, stochasticchannel models were developed and properly validated.These models were also evaluated inorder to estimate their corresponding channelcapacity. Different MIMO configurations andprocessing schemes were developed for both theFDD and TDD modes of UTRA, and their linkperformance was assessed. Performance evaluationwas completed by system simulations thatillustrated the benefits of MIMO configurationsto the network operator. Implementation cost vs.performance improvement was also covered bythe project, including the base station and terminalmanufacturer and network operator viewpoints.Finally, significant standards contributionswere generated by the project and presented to the pertinent 3GPP working groups.
Resumo:
The markets of biomass for energy are developing rapidly and becoming more international. A remarkable increase in the use of biomass for energy needs parallel and positive development in several areas, and there will be plenty of challenges to overcome. The main objective of the study was to clarify the alternative future scenarios for the international biomass market until the year 2020, and based on the scenario process, to identify underlying steps needed towards the vital working and sustainable biomass market for energy purposes. Two scenario processes were conducted for this study. The first was carried out with a group of Finnish experts and thesecond involved an international group. A heuristic, semi-structured approach, including the use of preliminary questionnaires as well as manual and computerised group support systems (GSS), was applied in the scenario processes.The scenario processes reinforced the picture of the future of international biomass and bioenergy markets as a complex and multi-layer subject. The scenarios estimated that the biomass market will develop and grow rapidly as well as diversify in the future. The results of the scenario process also opened up new discussion and provided new information and collective views of experts for the purposes of policy makers. An overall view resulting from this scenario analysis are the enormous opportunities relating to the utilisation of biomass as a resource for global energy use in the coming decades. The scenario analysis shows the key issues in the field: global economic growth including the growing need for energy, environmental forces in the global evolution, possibilities of technological development to solve global problems, capabilities of the international community to find solutions for global issues and the complex interdependencies of all these driving forces. The results of the scenario processes provide a starting point for further research analysing the technological and commercial aspects related the scenarios and foreseeing the scales and directions of biomass streams.
Resumo:
Technological development brings more and more complex systems to the consumer markets. The time required for bringing a new product to market is crucial for the competitive edge of a company. Simulation is used as a tool to model these products and their operation before actual live systems are built. The complexity of these systems can easily require large amounts of memory and computing power. Distributed simulation can be used to meet these demands. Distributed simulation has its problems. Diworse, a distributed simulation environment, was used in this study to analyze the different factors that affect the time required for the simulation of a system. Examples of these factors are the simulation algorithm, communication protocols, partitioning of the problem, distributionof the problem, capabilities of the computing and communications equipment and the external load. Offices offer vast amounts of unused capabilities in the formof idle workstations. The use of this computing power for distributed simulation requires the simulation to adapt to a changing load situation. This requires all or part of the simulation work to be removed from a workstation when the owner wishes to use the workstation again. If load balancing is not performed, the simulation suffers from the workstation's reduced performance, which also hampers the owner's work. Operation of load balancing in Diworse is studied and it is shown to perform better than no load balancing, as well as which different approaches for load balancing are discussed.
Resumo:
Tämä diplomityö määrittelee teknologiaseurantaprosessin, jolla korkean teknologian yritys voi ohjata toimintaansa. Korkean teknologian yrityksille on olennaista seurata teknologian kehitystä. Tällaiset yritykset tarvitsevat hyvin määritellyn järjestelmän, jolla ne voivat seurata ja ennustaa teknologista kehitystä.Työssä esitetään, että teknologiaseuranta ja kilpailuseuranta (competitive intelligence) ovat business intelligencen osa-alueita, jotka täydentävät ja tukevat toisiaan. Tärkeä havainto on, että business intelligence -prosessi on ennen kaikkea organisaation oppimisprosessi. Tästä seuraa, että minkä tahansa BI-prosessin tulisi perustua niihin prosesseihin, joiden avulla organisaatiot oppivat. Työssä esitetään myös, miten business intelligence, tietojohtaminen (knowledge management) ja organisaatioiden oppiminen liittyvät toisiinsa.Teknologiaseuranta on elintärkeä toiminto korkean teknologian yritykselle; sitä tarvitaan monella strategisen johtamisen osa-alueella, ainakin teknologia-, markkinointi- ja henkilöstöjohtamisessa. Teknologiaseurannan havaitaan myös olevan korkean teknologian yritykselle erittäin tärkeä ydinosaamisalue, jota ei voi kokonaan ulkoistaa.Työssä esitellään teknologiaseurantaprosessi, joka perustuu yleiselle business intelligence -prosessille ja siitä johdetulle kilpailuseurantaprosessille. Työssä myös esitetään ehdotus siitä, kuinka teknologiaseuranta voitaisiin järjestää korkean teknologian yrityksessä. Esitetty ratkaisu perustuu Community of practice -käsitteeseen. Community of practice on vapaaehtoisuuteen perustuva tiimi, jonka jäseniä yhdistää kiinnostus johonkin asiaan ja oppimishalu. Esimerkkiyrityksessä on tunnistettu selkeä tarve yhtenäiseen ja koordinoituun teknologiaseurantaan. Työssä esitetään alustava teknologiaseurantaprosessi esimerkkiyritykselle ja tunnistetaan teknologiaseurantaprosessin asiakkaat ja tekijät.
Resumo:
An appraisal has been conducted of the impact PADCT (Support Program for Scientific and Technological Development) has caused on brazilian Chemistry and Chemical Engineering over a ten years period (1985-1995). During this time PADCT invested US$ 87.5 million dollars to support both scientific and technolgical development of chemistry. The main results, from an academic point of view, has been the strengthening of support services for academic research, including libraries and analytical facilities, and a consequent increase of the number and quality of human resources trained at the graduate level as well as a significant increase in the number of scientific publications.
Resumo:
This work investigates performance of recent feature-based matching techniques when applied to registration of underwater images. Matching methods are tested versus different contrast enhancing pre-processing of images. As a result of the performed experiments for various dominating in images underwater artifacts and present deformation, the outperforming preprocessing, detection and description methods are proposed
Resumo:
Brazilian science is evolving rapidly and steadly in the last 10 years, reaching the 15º place in the international ranking. Research in nanotechnology is following a similar way generating new scientific and technological knowledge in several frontiers but specially in the interfaces of two or more areas, where Chemistry is consolidating itself as a central science. In this context, the supramolecular approach is a very promissing one because it allows the build-up of a chemical inteligence using all the sistematized knowledge for the design and development of new nanomaterials and products. The great challenge of Chemistry is not decrease the dimensionality of the materials but instead find ways to increase the dimensionality and structural complexity keeping strict control on the interactions between the components, in order to generate materials with new properties and functionalities. Unfortunately, the current vigorous advancement of scientific research has not been followed by the transformation of such know-how into patents and produts. Therefore much efforts should be devoted to build a national science and technology program, joining all the segments of the society involved in the technological development (university, institutes of technological research, industry and government) in order to promote the furtherance of the Brazilian technological base. Only in this way it is possible to evolve to a technological society capable to transform the scientific knowledge into wealthy, thus sustaining the socioeconomic development of the country.
Resumo:
The use of lignocellulosic fibers and their constituents, as raw materials in the production of polymeric and composite materials, represent an exceptional opportunity of sustainable technological development. In the present report works that discuss promising alternatives of obtaining and use of materials such as cellulose, hemicellulose, lignin, cellulose nanocrystals and biocomposites were revised. The advance in the use of biomass can be, in a near future, capable of going beyond the application difficulties of these vast materials, especially in relation to the economical unviability, by the production of high performance polymeric and composite materials. This advance would represent a higher profitability to some areas of agrobusiness, especially the sector of biofuels, which produces elevated amounts of biomass waste.
Resumo:
Contextualized overview of the Biodiesel Production Chain, from the lab bench to the industry, with critical evaluation of state-of-art and technological development through scientific articles and patents, focusing on feedstock, reaction/production, first and second generation processes, specification and quality, transport, storage, co-products (effluents and sub-products), and emissions. Challenges are identified and solutions are proposed based on the Brazilian feedstock, edaphoclimatic conditions, process monitoring in remote regions, state policy, and environment preservation, among others. Forecasts are made based on the technology assessment, identifying future trends and opportunities for R&D&I.
Resumo:
Brazil is considered a major player in relation to renewable energy sources. Since 2005, the MME have encouraged scientific and technological development to advance the hydrogen economy in the country. In this work we identified the patents based on hydrogen production filed by the INPI by evaluating the energy production in Brazil in conjunction with data held in the BNE and the prediction of hydrogen production made by the CGEE. It can be observed that the country needs substantial technological stimulation, but shows promise for producing renewable energy sources.
Resumo:
Based on Science, Technology & Innovation (ST&I) indicators, Brazil is a competitive and interesting country from the point of view of technological foreign investment. However, it is still incipient with regard to national investments, production of technological knowledge, inbound mobility of scientists and technology transfer to the productive sector. Among many other factors, global patent production is considered as an important indicator of innovation. Likewise, the balance between revenue and expenses obtained through royalties and licensing fees of technologies is also critical in mapping the diffusion and absorption of knowledge. The understanding of intellectual property and its strategic management brings a significant advantage to the economic and technological development of nations, especially in the field of chemistry, which greatly contributes to biotechnology, new materials and microelectronics - three fundamental areas for innovation in developed countries. Therefore, this article aims to map out competencies in chemistry in Brazil and evaluate science, technology and innovation indicators in the country, comparing this dynamic to the one of other BRIC members (Russia, India and China). Chemistry is the fourth biggest field of interest in Brazil based on the number of researchers registered at the governmental platform for researchers, Plataforma Lattes/CNPq, and is preceded by education, medicine and agronomy. The majority of research groups are registered in the area of materials, followed by macromolecules and polymers, pharmaceutical products and basic materials chemistry. These groups represent approximately 77% of research groups analyzed, therefore, indicating a tendency in the country. The analyses of patents in different sub-areas of chemistry reveal that non-residents file most deposits in the country, a probable reflection of the low internal intellectual property culture. Pharmaceutics and Fine Chemistry are prominent areas in the country, in line with the global trend. Among BRIC countries, China has the highest number of patents and of requests for protection in international offices. On the other hand, Brazil has the lowest number of chemical patents published at USPTO, EPO and JPO. An analysis of the transfer of technology data indicates an increase in this activity in various sub-areas of chemistry in the country. Despite the great efforts made by the country to consolidate its national innovation system, more needs to be done to put Brazil in a competitive position. In a globalized world dominated by large players, Brazil needs a lot of progress on ownership and generation of chemistry technologies to strengthen its national sovereignty. It is essential to strengthen chemical research at all levels, from elementary school to university, as an inexhaustible source of knowledge and technology that, when properly protected, may generate real public achievement and social return.