895 resultados para SYNDIOSPECIFIC POLYMERIZATION
Resumo:
The Ziegler-Natta catalyst and the polymerization thereof are systems which require careful handling and special treatment of chemicals. In spite of the use of inert atmosphere and dry chemicals, some Ziegler-Natta systems may present low activities or even may deactivate because of unsuitable handling. Some features of the TiCl3 synthesis and its characterization when related to the presence of impurities are described. Evidences of poor handling of chemicals and/or laboratory devices while in synthesis of the catalyst are emphasized. The problems arising from butadiene polymerization and some relevant details in propylene polymerization are also presented with teaching objectives.
Resumo:
The initiation step of the light-induced polymerization kinetics of vinyl monomers using dye-sensitized photoinitiators to generate active radicals is discussed. The photoredox processes of basic dyes with amines and sulfinates are described as photochemical systems capable of starting free-radical polymerization of vinyl monomers in homogeneous and microheterogeneous media. Photophysical techniques like laser flash photolysis and time-correlated single photon counting are used to investigate the excited-state kinetics of the dyes.
Resumo:
Polyaddition of commercial monomers is easily performed on a domestic microwave oven. The rate of polymerization depends on the structure of the monomer, power and time of irradiation. This methodology can easily be used to demonstrate the acceleration of organic reactions promoted by microwaves.
Resumo:
Chalcone and its fluorinated derivatives were synthesized and photolyzed in the solid state. UV irradiation of chalcone and its monosubstituted fluorine derivatives (3- and 4-fluorchalcone) resulted in a mixture of anti-head-head (gamma-truxinic), sin-head-tail (alpha-truxilic) and anti-head-tail (epsilon-truxilic) dimers. On the other hand, upon irradiation of 3,4- and 3,5-difluorchalcone a stereoselective formation of the alpha-truxilic photodimer was observed, whereas for 2-substituted chalcones (2,3difluorchalcone, 2,5-difluorchalcone, 2,6-difluorchalcone and 2,3,4-trifluorchalcone) the beta-truxilic dimer was stereoselectively obtained. 2',3',4',5',6'-pentafluorchalcone was the less reactive of all chalcones studied and at least one of the possible photodimers, i.e the anti-head-head isomer, was identified. Irradiation of polyfluorinated chalcones such as 2,3,5,6-tetrafluor-, 2,3,4,5,6-pentafluor-, and 2,2',3,3',4,4',5,5',6,6'-decafluorchalcone led only to polymerization and/or decomposition products.
Resumo:
In this work we report the synthesis of some organolanthanide compounds which were identified as LnCl2Cp(PzA)2, Ln = Nd, Sm, Eu and Tb, Cp = cyclopentadienyl and PzA = pirazinamide, by elemental analyses, complexometric titration with EDTA, thermal analyses and IR spectra. Thermal analysis and infrared spectra indicated that the coordination of the pyrazinamide to the lanthanide ions was made by the O atom of the carbonyl group and by one or both N atoms of the pyrazinamide ring. This class of compound showed catalytic activity of ca. 4.0 to 6.4 kgPE molLn-1 h-1 bar-1, in ethylene polymerization, using methylaluminoxane as cocatalyst. The resulting polyethylene presented low crystallinity (20%).
Resumo:
In this work we obtained microporous and mesoporous silica membranes by sol-gel processing. Tetraethylortosilicate (TEOS) was used as precursor. Nitric acid was used as catalyst. In order to study the affect of N,N-dimethylformamide (NDF) as drying additive, we used a molar ratio TEOS/NDF of 1/3. The performance of N,N-dimethylformamide was evaluated through monolithicity measurements. The structural evolutions occurring during the sol-gel transition and in the interconnected network of the membranes during thermal treatment were monitored by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses and nitrogen sorption. We noted that in the presence of N,N-dimethylformamide, polymerization goes through a temporary stabilization of oligomers. The Si-O(H) bonds are stronger and belong to a more cross-linked structure for the N,N-dimethylformamide containing sol. The membranes obtained in the presence of N,N-dimethylformamide have larger surface area and its pore structure is in the range of mesoporous. The membranes obtained without additive have pore structure in the range of microporous.
Resumo:
Dilutions of methylmetacrylate ranging between 1 and 50 ppm were obtained from a stock solution of 1 ml of monomer in 100 ml of deionised water, and were analyzed by an absorption spectrophotometer in the UV-visible. Absorbance values were used to develop a calibration model based on the PLS, with the aim to determine new sample concentrations. The number of latent variables used was 6, with the standard errors of calibration and prediction found to be 0,048 ml/100 ml and 0,058 ml/100 ml. The calibration model was successfully used to calculate the concentration of monomer released in water, where complete dentures were kept for one hour after polymerization.
Resumo:
Nowadays the catalyst systems based on neodymium are the ones most used in the high cis polybutadiene production. These systems contain a neodymium compound (catalyst), an alkylaluminium compound (cocatalyst) and a halogen compound (halogenating agent). The microstructure, molecular weight characteristics and the reaction activity are influenced by the nature and concentration of catalyst system components. Those characteristics are also affected by the polymerization conditions. This paper presents a brief review on 1,4-cis-butadiene polymerization on neodymium catalysts.
Resumo:
This review deals with the homo- and copolymerization of styrene with nickel catalysts. The catalytic activity, polymer stereoregularity, polymer molecular weight and polydispersity are dependent upon nickel ligands and reaction parameters. Catalysts supported on silica, treated with methylaluminoxane (MAO), have shown higher stereospecificity and activity compared to homogeneous ones. The influence of these parameters is discussed focusing on the elucidation of some aspects of the polymerization mechanism.
Resumo:
MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented.
Resumo:
Monolithic stationary phases represent a new generation of chromatographic separation media. These phases consist of a continuous separation bed prepared by in situ polymerization or consolidation inside the column tubing. In recent years, their simple preparation procedure, unique properties and excellent performance have attracted quite remarkable attention in liquid chromatography and capillary electrochromatography. This review summarizes the preparation, characterization and applications of monolithic stationary phases. The analytical potential of these columns is demonstrated with separations involving various families of compounds in different separation modes.
Resumo:
In an attempt to improve the performance of organolanthanide catalysts we investigated the use of the industrially important cocatalyst methylaluminoxane (MAO) to activate organolanthanide compounds in olefin polymerization. The catalytic systems LnBrCp2(THF)2/MAO (Cp=cyclopentadienyl) and LnBrCp*2THF/MAO (Cp*= pentamethylcyclopentadienyl), Ln=Pr and Yb, were active in styrene polymerization but inactive in ethylene and propylene polymerization. These systems produced atactic polystyrene with conversions of up to 8.2% (PrBrCp*2THF, Al/Ln=200, T=80ºC, t=4 h) in toluene. In the absence of solvent, the conversion is 26.0% (1.5 h) and the molar mass of the atactic polystyrene is almost ten times higher (43 kg/mol).
Resumo:
The principal techniques for the synthesis of liquid crystalline block copolymers are reviewed. The syntheses are done by living/controlled free radical chain polymerization. The copolymers display an amorphous continuous phase and a discontinuous liquid crystalline phase (LC). The presence of oxypropylenic segments disturbs the range of mesophase transitions at lower temperatures. This behavior is not observed when styrenic segments are employed and suggests that the liquid crystalline behavior can be modified in block copolymers to show mesophases at higher and lower temperatures according to the flexibility of the chain segment that is present.
Resumo:
The main topics related to the use of dual-site catalysts in the production of polymers with broad molecular weight distribution are reviewed. The polymerization using dual-site catalysts is more economical and allows to produce a higher quality product than other processes, such as polymer blend and multistage reactors. However, the formulation of these catalysts is quite complicated since the same catalyst must produce distinct polymer grades. In addition, the release of patents concerning the combination of metallocenes and new technologies for polymerization shows that polymerization processes using dual-site catalysts are of current industrial interest.
Resumo:
The aim of this work is the production and characterization of plasma polymerized acetaldehyde thin films. These films show highly polar species, are hydrophilic, organophilic and easily adsorb organic reactants with CO radicals but only allow permeation of reactants with OH radicals. The good step coverage of films deposited on aluminum trenches is useful for sensor development. Films deposited on hydrophobic substrates may result in a discontinued layer, which allows the use of preconcentration in sample pretreatment. Deposition on microchannels showed the possibility of chromatographic columns and/or retention system production to selectively detect or remove organic compounds from gas flows.