483 resultados para Ruído impulsivo
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Information extraction is a frequent and relevant problem in digital signal processing. In the past few years, different methods have been utilized for the parameterization of signals and the achievement of efficient descriptors. When the signals possess statistical cyclostationary properties, the Cyclic Autocorrelation Function (CAF) and the Spectral Cyclic Density (SCD) can be used to extract second-order cyclostationary information. However, second-order cyclostationary information is poor in nongaussian signals, as the cyclostationary analysis in this case should comprise higher-order statistical information. This paper proposes a new mathematical tool for the higher-order cyclostationary analysis based on the correntropy function. Specifically, the cyclostationary analysis is revisited focusing on the information theory, while the Cyclic Correntropy Function (CCF) and Cyclic Correntropy Spectral Density (CCSD) are also defined. Besides, it is analytically proven that the CCF contains information regarding second- and higher-order cyclostationary moments, being a generalization of the CAF. The performance of the aforementioned new functions in the extraction of higher-order cyclostationary characteristics is analyzed in a wireless communication system where nongaussian noise exists.
Resumo:
In the oil prospection research seismic data are usually irregular and sparsely sampled along the spatial coordinates due to obstacles in placement of geophones. Fourier methods provide a way to make the regularization of seismic data which are efficient if the input data is sampled on a regular grid. However, when these methods are applied to a set of irregularly sampled data, the orthogonality among the Fourier components is broken and the energy of a Fourier component may "leak" to other components, a phenomenon called "spectral leakage". The objective of this research is to study the spectral representation of irregularly sampled data method. In particular, it will be presented the basic structure of representation of the NDFT (nonuniform discrete Fourier transform), study their properties and demonstrate its potential in the processing of the seismic signal. In this way we study the FFT (fast Fourier transform) and the NFFT (nonuniform fast Fourier transform) which rapidly calculate the DFT (discrete Fourier transform) and NDFT. We compare the recovery of the signal using the FFT, DFT and NFFT. We approach the interpolation of seismic trace using the ALFT (antileakage Fourier transform) to overcome the problem of spectral leakage caused by uneven sampling. Applications to synthetic and real data showed that ALFT method works well on complex geology seismic data and suffers little with irregular spatial sampling of the data and edge effects, in addition it is robust and stable with noisy data. However, it is not as efficient as the FFT and its reconstruction is not as good in the case of irregular filling with large holes in the acquisition.
Resumo:
In the oil prospection research seismic data are usually irregular and sparsely sampled along the spatial coordinates due to obstacles in placement of geophones. Fourier methods provide a way to make the regularization of seismic data which are efficient if the input data is sampled on a regular grid. However, when these methods are applied to a set of irregularly sampled data, the orthogonality among the Fourier components is broken and the energy of a Fourier component may "leak" to other components, a phenomenon called "spectral leakage". The objective of this research is to study the spectral representation of irregularly sampled data method. In particular, it will be presented the basic structure of representation of the NDFT (nonuniform discrete Fourier transform), study their properties and demonstrate its potential in the processing of the seismic signal. In this way we study the FFT (fast Fourier transform) and the NFFT (nonuniform fast Fourier transform) which rapidly calculate the DFT (discrete Fourier transform) and NDFT. We compare the recovery of the signal using the FFT, DFT and NFFT. We approach the interpolation of seismic trace using the ALFT (antileakage Fourier transform) to overcome the problem of spectral leakage caused by uneven sampling. Applications to synthetic and real data showed that ALFT method works well on complex geology seismic data and suffers little with irregular spatial sampling of the data and edge effects, in addition it is robust and stable with noisy data. However, it is not as efficient as the FFT and its reconstruction is not as good in the case of irregular filling with large holes in the acquisition.
Resumo:
Trace gases are important to our environment even though their presence comes only by ‘traces’, but their concentrations must be monitored, so any necessary interventions can be done at the right time. There are some lower and upper boundaries which produce nice conditions for our lives and then monitoring trace gases comes as an essential task nowadays to be accomplished by many techniques. One of them is the differential optical absorption spectroscopy (DOAS), which consists mathematically on a regression - the classical method uses least-squares - to retrieve the trace gases concentrations. In order to achieve better results, many works have tried out different techniques instead of the classical approach. Some have tried to preprocess the signals to be analyzed by a denoising procedure - e.g. discrete wavelet transform (DWT). This work presents a semi-empirical study to find out the most suitable DWT family to be used in this denoising. The search seeks among many well-known families the one to better remove the noise, keeping the original signal’s main features, then by decreasing the noise, the residual left after the regression is done decreases too. The analysis take account the wavelet decomposition level, the threshold to be applied on the detail coefficients and how to apply them - hard or soft thresholding. The signals used come from an open and online data base which contains characteristic signals from some trace gases usually studied.
Resumo:
Trace gases are important to our environment even though their presence comes only by ‘traces’, but their concentrations must be monitored, so any necessary interventions can be done at the right time. There are some lower and upper boundaries which produce nice conditions for our lives and then monitoring trace gases comes as an essential task nowadays to be accomplished by many techniques. One of them is the differential optical absorption spectroscopy (DOAS), which consists mathematically on a regression - the classical method uses least-squares - to retrieve the trace gases concentrations. In order to achieve better results, many works have tried out different techniques instead of the classical approach. Some have tried to preprocess the signals to be analyzed by a denoising procedure - e.g. discrete wavelet transform (DWT). This work presents a semi-empirical study to find out the most suitable DWT family to be used in this denoising. The search seeks among many well-known families the one to better remove the noise, keeping the original signal’s main features, then by decreasing the noise, the residual left after the regression is done decreases too. The analysis take account the wavelet decomposition level, the threshold to be applied on the detail coefficients and how to apply them - hard or soft thresholding. The signals used come from an open and online data base which contains characteristic signals from some trace gases usually studied.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This thesis presents and discusses the results of ambient seismic noise correlation for two different environments: intraplate and Mid-Atlantic Ridge. The coda wave interferometry method has also been tested for the intraplate data. Ambient noise correlation is a method that allows to retrieve the structural response between two receivers from ambient noise records, as if one of the station was a virtual source. It has been largely used in seismology to image the subsurface and to monitor structural changes associated mostly with volcanic eruptions and large earthquakes. In the intraplate study, we were able to detect localized structural changes related to a small earthquake swarm, which main event is mR 3.7, North-East of Brazil. We also showed that the 1-bit normalization and spectral whitening result on the loss of waveform details and that the phase auto-correlation, which is amplitude unbiased, seems to be more sensitive and robust for our analysis of a small earthquake swarm. The analysis of 6 months of data using cross-correlations detect clear medium changes soon after the main event while the auto-correlations detect changes essentially after 1 month. It could be explained by fluid pressure redistribution which can be initiated by hydromechanical changes and opened path ways to shallower depth levels due to later occurring earthquakes. In the Mid-Atlantic Ridge study, we investigate structural changes associated with a mb 4.9 earthquake in the region of the Saint Paul transform fault. The data have been recorded by a single broadband seismic station located at less than 200 km from the Mid-Atlantic ridge. The results of the phase auto-correlation for a 5-month period, show a strong co-seismic medium change followed by a relatively fast post-seismic recovery. This medium change is likely related to the damages caused by the earthquake’s ground shaking. The healing process (filling of the new cracks) that lasted 60 days can be decomposed in two phases, a fast recovery (70% in ~30 days) in the early post-seismic stage and a relatively slow recovery later (30% in ~30 days). In the coda wave interferometry study, we monitor temporal changes of the subsurface caused by the small intraplate earthquake swarm mentioned previously. The method was first validated with synthetics data. We were able to detect a change of 2.5% in the source position and a 15% decrease of the scatterers’ amount. Then, from the real data, we observed a rapid decorrelation of the seismic coda after the mR 3.7 seismic event. This indicates a rapid change of the subsurface in the fault’s region induced by the earthquake.
Resumo:
This thesis presents and discusses the results of ambient seismic noise correlation for two different environments: intraplate and Mid-Atlantic Ridge. The coda wave interferometry method has also been tested for the intraplate data. Ambient noise correlation is a method that allows to retrieve the structural response between two receivers from ambient noise records, as if one of the station was a virtual source. It has been largely used in seismology to image the subsurface and to monitor structural changes associated mostly with volcanic eruptions and large earthquakes. In the intraplate study, we were able to detect localized structural changes related to a small earthquake swarm, which main event is mR 3.7, North-East of Brazil. We also showed that the 1-bit normalization and spectral whitening result on the loss of waveform details and that the phase auto-correlation, which is amplitude unbiased, seems to be more sensitive and robust for our analysis of a small earthquake swarm. The analysis of 6 months of data using cross-correlations detect clear medium changes soon after the main event while the auto-correlations detect changes essentially after 1 month. It could be explained by fluid pressure redistribution which can be initiated by hydromechanical changes and opened path ways to shallower depth levels due to later occurring earthquakes. In the Mid-Atlantic Ridge study, we investigate structural changes associated with a mb 4.9 earthquake in the region of the Saint Paul transform fault. The data have been recorded by a single broadband seismic station located at less than 200 km from the Mid-Atlantic ridge. The results of the phase auto-correlation for a 5-month period, show a strong co-seismic medium change followed by a relatively fast post-seismic recovery. This medium change is likely related to the damages caused by the earthquake’s ground shaking. The healing process (filling of the new cracks) that lasted 60 days can be decomposed in two phases, a fast recovery (70% in ~30 days) in the early post-seismic stage and a relatively slow recovery later (30% in ~30 days). In the coda wave interferometry study, we monitor temporal changes of the subsurface caused by the small intraplate earthquake swarm mentioned previously. The method was first validated with synthetics data. We were able to detect a change of 2.5% in the source position and a 15% decrease of the scatterers’ amount. Then, from the real data, we observed a rapid decorrelation of the seismic coda after the mR 3.7 seismic event. This indicates a rapid change of the subsurface in the fault’s region induced by the earthquake.
Resumo:
Skeletal muscle consists of muscle fiber types that have different physiological and biochemical characteristics. Basically, the muscle fiber can be classified into type I and type II, presenting, among other features, contraction speed and sensitivity to fatigue different for each type of muscle fiber. These fibers coexist in the skeletal muscles and their relative proportions are modulated according to the muscle functionality and the stimulus that is submitted. To identify the different proportions of fiber types in the muscle composition, many studies use biopsy as standard procedure. As the surface electromyography (EMGs) allows to extract information about the recruitment of different motor units, this study is based on the assumption that it is possible to use the EMG to identify different proportions of fiber types in a muscle. The goal of this study was to identify the characteristics of the EMG signals which are able to distinguish, more precisely, different proportions of fiber types. Also was investigated the combination of characteristics using appropriate mathematical models. To achieve the proposed objective, simulated signals were developed with different proportions of motor units recruited and with different signal-to-noise ratios. Thirteen characteristics in function of time and the frequency were extracted from emulated signals. The results for each extracted feature of the signals were submitted to the clustering algorithm k-means to separate the different proportions of motor units recruited on the emulated signals. Mathematical techniques (confusion matrix and analysis of capability) were implemented to select the characteristics able to identify different proportions of muscle fiber types. As a result, the average frequency and median frequency were selected as able to distinguish, with more precision, the proportions of different muscle fiber types. Posteriorly, the features considered most able were analyzed in an associated way through principal component analysis. Were found two principal components of the signals emulated without noise (CP1 and CP2) and two principal components of the noisy signals (CP1 and CP2 ). The first principal components (CP1 and CP1 ) were identified as being able to distinguish different proportions of muscle fiber types. The selected characteristics (median frequency, mean frequency, CP1 and CP1 ) were used to analyze real EMGs signals, comparing sedentary people with physically active people who practice strength training (weight training). The results obtained with the different groups of volunteers show that the physically active people obtained higher values of mean frequency, median frequency and principal components compared with the sedentary people. Moreover, these values decreased with increasing power level for both groups, however, the decline was more accented for the group of physically active people. Based on these results, it is assumed that the volunteers of the physically active group have higher proportions of type II fibers than sedentary people. Finally, based on these results, we can conclude that the selected characteristics were able to distinguish different proportions of muscle fiber types, both for the emulated signals as to the real signals. These characteristics can be used in several studies, for example, to evaluate the progress of people with myopathy and neuromyopathy due to the physiotherapy, and also to analyze the development of athletes to improve their muscle capacity according to their sport. In both cases, the extraction of these characteristics from the surface electromyography signals provides a feedback to the physiotherapist and the coach physical, who can analyze the increase in the proportion of a given type of fiber, as desired in each case.
Resumo:
The objective of this work is to use algorithms known as Boltzmann Machine to rebuild and classify patterns as images. This algorithm has a similar structure to that of an Artificial Neural Network but network nodes have stochastic and probabilistic decisions. This work presents the theoretical framework of the main Artificial Neural Networks, General Boltzmann Machine algorithm and a variation of this algorithm known as Restricted Boltzmann Machine. Computer simulations are performed comparing algorithms Artificial Neural Network Backpropagation with these algorithms Boltzmann General Machine and Machine Restricted Boltzmann. Through computer simulations are analyzed executions times of the different described algorithms and bit hit percentage of trained patterns that are later reconstructed. Finally, they used binary images with and without noise in training Restricted Boltzmann Machine algorithm, these images are reconstructed and classified according to the bit hit percentage in the reconstruction of the images. The Boltzmann machine algorithms were able to classify patterns trained and showed excellent results in the reconstruction of the standards code faster runtime and thus can be used in applications such as image recognition.
Resumo:
A number of studies in the areas of Biomedical Engineering and Health Sciences have employed machine learning tools to develop methods capable of identifying patterns in different sets of data. Despite its extinction in many countries of the developed world, Hansen’s disease is still a disease that affects a huge part of the population in countries such as India and Brazil. In this context, this research proposes to develop a method that makes it possible to understand in the future how Hansen’s disease affects facial muscles. By using surface electromyography, a system was adapted so as to capture the signals from the largest possible number of facial muscles. We have first looked upon the literature to learn about the way researchers around the globe have been working with diseases that affect the peripheral neural system and how electromyography has acted to contribute to the understanding of these diseases. From these data, a protocol was proposed to collect facial surface electromyographic (sEMG) signals so that these signals presented a high signal to noise ratio. After collecting the signals, we looked for a method that would enable the visualization of this information in a way to make it possible to guarantee that the method used presented satisfactory results. After identifying the method's efficiency, we tried to understand which information could be extracted from the electromyographic signal representing the collected data. Once studies demonstrating which information could contribute to a better understanding of this pathology were not to be found in literature, parameters of amplitude, frequency and entropy were extracted from the signal and a feature selection was made in order to look for the features that better distinguish a healthy individual from a pathological one. After, we tried to identify the classifier that best discriminates distinct individuals from different groups, and also the set of parameters of this classifier that would bring the best outcome. It was identified that the protocol proposed in this study and the adaptation with disposable electrodes available in market proved their effectiveness and capability of being used in different studies whose intention is to collect data from facial electromyography. The feature selection algorithm also showed that not all of the features extracted from the signal are significant for data classification, with some more relevant than others. The classifier Support Vector Machine (SVM) proved itself efficient when the adequate Kernel function was used with the muscle from which information was to be extracted. Each investigated muscle presented different results when the classifier used linear, radial and polynomial kernel functions. Even though we have focused on Hansen’s disease, the method applied here can be used to study facial electromyography in other pathologies.
Resumo:
A number of studies in the areas of Biomedical Engineering and Health Sciences have employed machine learning tools to develop methods capable of identifying patterns in different sets of data. Despite its extinction in many countries of the developed world, Hansen’s disease is still a disease that affects a huge part of the population in countries such as India and Brazil. In this context, this research proposes to develop a method that makes it possible to understand in the future how Hansen’s disease affects facial muscles. By using surface electromyography, a system was adapted so as to capture the signals from the largest possible number of facial muscles. We have first looked upon the literature to learn about the way researchers around the globe have been working with diseases that affect the peripheral neural system and how electromyography has acted to contribute to the understanding of these diseases. From these data, a protocol was proposed to collect facial surface electromyographic (sEMG) signals so that these signals presented a high signal to noise ratio. After collecting the signals, we looked for a method that would enable the visualization of this information in a way to make it possible to guarantee that the method used presented satisfactory results. After identifying the method's efficiency, we tried to understand which information could be extracted from the electromyographic signal representing the collected data. Once studies demonstrating which information could contribute to a better understanding of this pathology were not to be found in literature, parameters of amplitude, frequency and entropy were extracted from the signal and a feature selection was made in order to look for the features that better distinguish a healthy individual from a pathological one. After, we tried to identify the classifier that best discriminates distinct individuals from different groups, and also the set of parameters of this classifier that would bring the best outcome. It was identified that the protocol proposed in this study and the adaptation with disposable electrodes available in market proved their effectiveness and capability of being used in different studies whose intention is to collect data from facial electromyography. The feature selection algorithm also showed that not all of the features extracted from the signal are significant for data classification, with some more relevant than others. The classifier Support Vector Machine (SVM) proved itself efficient when the adequate Kernel function was used with the muscle from which information was to be extracted. Each investigated muscle presented different results when the classifier used linear, radial and polynomial kernel functions. Even though we have focused on Hansen’s disease, the method applied here can be used to study facial electromyography in other pathologies.
Resumo:
In this work it was developed mathematical resolutions taking as parameter maximum intensity values for the interference analysis of electric and magnetic fields and was given two virtual computer system that supports families of CDMA and WCDMA technologies. The first family were developed computational resources to solve electric and magnetic field calculations and power densities in Radio Base stations , with the use of CDMA technology in the 800 MHz band , taking into account the permissible values referenced by the Commission International Protection on non-Ionizing Radiation . The first family is divided into two segments of calculation carried out in virtual operation. In the first segment to compute the interference field radiated by the base station with input information such as radio channel power; Gain antenna; Radio channel number; Operating frequency; Losses in the cable; Attenuation of direction; Minimum Distance; Reflections. Said computing system allows to quickly and without the need of implementing instruments for measurements, meet the following calculated values: Effective Radiated Power; Sector Power Density; Electric field in the sector; Magnetic field in the sector; Magnetic flux density; point of maximum permissible exposure of electric field and power density. The results are shown in charts for clarity of view of power density in the industry, as well as the coverage area definition. The computer module also includes folders specifications antennas, cables and towers used in cellular telephony, the following manufacturers: RFS World, Andrew, Karthein and BRASILSAT. Many are presented "links" network access "Internet" to supplement the cable specifications, antennas, etc. . In the second segment of the first family work with more variables , seeking to perform calculations quickly and safely assisting in obtaining results of radio signal loss produced by ERB . This module displays screens representing propagation systems denominated "A" and "B". By propagating "A" are obtained radio signal attenuation calculations in areas of urban models , dense urban , suburban , and rural open . In reflection calculations are present the reflection coefficients , the standing wave ratio , return loss , the reflected power ratio , as well as the loss of the signal by mismatch impedance. With the spread " B" seek radio signal losses in the survey line and not targeted , the effective area , the power density , the received power , the coverage radius , the conversion levels and the gain conversion systems radiant . The second family of virtual computing system consists of 7 modules of which 5 are geared towards the design of WCDMA and 2 technology for calculation of telephone traffic serving CDMA and WCDMA . It includes a portfolio of radiant systems used on the site. In the virtual operation of the module 1 is compute-: distance frequency reuse, channel capacity with noise and without noise, Doppler frequency, modulation rate and channel efficiency; Module 2 includes computes the cell area, thermal noise, noise power (dB), noise figure, signal to noise ratio, bit of power (dBm); with the module 3 reaches the calculation: breakpoint, processing gain (dB) loss in the space of BTS, noise power (w), chip period and frequency reuse factor. Module 4 scales effective radiated power, sectorization gain, voice activity and load effect. The module 5 performs the calculation processing gain (Hz / bps) bit time, bit energy (Ws). Module 6 deals with the telephone traffic and scales 1: traffic volume, occupancy intensity, average time of occupancy, traffic intensity, calls completed, congestion. Module 7 deals with two telephone traffic and allows calculating call completion and not completed in HMM. Tests were performed on the mobile network performance field for the calculation of data relating to: CINP , CPI , RSRP , RSRQ , EARFCN , Drop Call , Block Call , Pilot , Data Bler , RSCP , Short Call, Long Call and Data Call ; ECIO - Short Call and Long Call , Data Call Troughput . As survey were conducted surveys of electric and magnetic field in an ERB , trying to observe the degree of exposure to non-ionizing radiation they are exposed to the general public and occupational element. The results were compared to permissible values for health endorsed by the ICNIRP and the CENELEC .