960 resultados para Real Electricity Markets Data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we discuss some practical implications for implementing adaptable network algorithms applied to non-stationary time series problems. Using electricity load data and training with the extended Kalman filter, we demonstrate that the dynamic model-order increment procedure of the resource allocating RBF network (RAN) is highly sensitive to the parameters of the novelty criterion. We investigate the use of system noise and forgetting factors for increasing the plasticity of the Kalman filter training algorithm, and discuss the consequences for on-line model order selection. We also find that a recently-proposed alternative novelty criterion, found to be more robust in stationary environments, does not fare so well in the non-stationary case due to the need for filter adaptability during training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been much recent research into extracting useful diagnostic features from the electrocardiogram with numerous studies claiming impressive results. However, the robustness and consistency of the methods employed in these studies is rarely, if ever, mentioned. Hence, we propose two new methods; a biologically motivated time series derived from consecutive P-wave durations, and a mathematically motivated regularity measure. We investigate the robustness of these two methods when compared with current corresponding methods. We find that the new time series performs admirably as a compliment to the current method and the new regularity measure consistently outperforms the current measure in numerous tests on real and synthetic data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is a piece of applied research. It is the result of a joint project between the University of Aston Interdisciplinary Higher Degrees Scheme and International Aeradio plc (IAL). It considers the structure and organisation of overseas business and the effects that exchange rate movements have on financial performance. It looks in detail at a series of overseas contracts and factors which affect the monitoring and performance of those contracts. From this initial research is developed a series of conceptual models which attempt to capture the effects of foreign exchange rate movements on contract costing, the monitoring of performance on overseas contracts and a measure of company wide exposure. These models are then considered in the context of real IAL generated data and circumstances. The work is finally considered in the context of a survey of other companies with a similar mode of undertaking overseas business with the aim of placing the work in a general context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lock-in is observed in real world markets of experience goods; experience goods are goods whose characteristics are difficult to determine in advance, but ascertained upon consumption. We create an agent-based simulation of consumers choosing between two experience goods available in a virtual market. We model consumers in a grid representing the spatial network of the consumers. Utilising simple assumptions, including identical distributions of product experience and consumers having a degree of follower tendency, we explore the dynamics of the model through simulations. We conduct simulations to create a lock-in before testing several hypotheses upon how to break an existing lock-in; these include the effect of advertising and free give-away. Our experiments show that the key to successfully breaking a lock-in required the creation of regions in a consumer population. Regions arise due to the degree of local conformity between agents within the regions, which spread throughout the population when a mildly superior competitor was available. These regions may be likened to a niche in a market, which gains in popularity to transition into the mainstream.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many real applications of Data Envelopment Analysis (DEA), the decision makers have to deteriorate some inputs and some outputs. This could be because of limitation of funds available. This paper proposes a new DEA-based approach to determine highest possible reduction in the concern input variables and lowest possible deterioration in the concern output variables without reducing the efficiency in any DMU. A numerical example is used to illustrate the problem. An application in banking sector with limitation of IT investment shows the usefulness of the proposed method. © 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As microblog services such as Twitter become a fast and convenient communication approach, identification of trendy topics in microblog services has great academic and business value. However detecting trendy topics is very challenging due to huge number of users and short-text posts in microblog diffusion networks. In this paper we introduce a trendy topics detection system under computation and communication resource constraints. In stark contrast to retrieving and processing the whole microblog contents, we develop an idea of selecting a small set of microblog users and processing their posts to achieve an overall acceptable trendy topic coverage, without exceeding resource budget for detection. We formulate the selection operation of these subset users as mixed-integer optimization problems, and develop heuristic algorithms to compute their approximate solutions. The proposed system is evaluated with real-time test data retrieved from Sina Weibo, the dominant microblog service provider in China. It's shown that by monitoring 500 out of 1.6 million microblog users and tracking their microposts (about 15,000 daily) with our system, nearly 65% trendy topics can be detected, while on average 5 hours earlier before they appear in Sina Weibo official trends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Market mechanisms are a means by which resources in contention can be allocated between contending parties, both in human economies and those populated by software agents. Designing such mechanisms has traditionally been carried out by hand, and more recently by automation. Assessing these mechanisms typically involves them being evaluated with respect to multiple conflicting objectives, which can often be nonlinear, noisy, and expensive to compute. For typical performance objectives, it is known that designed mechanisms often fall short on being optimal across all objectives simultaneously. However, in all previous automated approaches, either only a single objective is considered, or else the multiple performance objectives are combined into a single objective. In this paper we do not aggregate objectives, instead considering a direct, novel application of multi-objective evolutionary algorithms (MOEAs) to the problem of automated mechanism design. This allows the automatic discovery of trade-offs that such objectives impose on mechanisms. We pose the problem of mechanism design, specifically for the class of linear redistribution mechanisms, as a naturally existing multi-objective optimisation problem. We apply a modified version of NSGA-II in order to design mechanisms within this class, given economically relevant objectives such as welfare and fairness. This application of NSGA-II exposes tradeoffs between objectives, revealing relationships between them that were otherwise unknown for this mechanism class. The understanding of the trade-off gained from the application of MOEAs can thus help practitioners with an insightful application of discovered mechanisms in their respective real/artificial markets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

External metrology systems are increasingly being integrated with traditional industrial articulated robots, especially in the aerospace industries, to improve their absolute accuracy for precision operations such as drilling, machining and jigless assembly. While currently most of the metrology assisted robotics control systems are limited in their position update rate, such that the robot has to be stopped in order to receive a metrology coordinate update, some recent efforts are addressed toward controlling robots using real-time metrology data. The indoor GPS is one of the metrology systems that may be used to provide real-time 6DOF data to a robot controller. Even if there is a noteworthy literature dealing with the evaluation of iGPS performance, there is, however, a lack of literature on how well the iGPS performs under dynamic conditions. This paper presents an experimental evaluation of the dynamic measurement performance of the iGPS, tracking the trajectories of an industrial robot. The same experiment is also repeated using a laser tracker. Besides the experiment results presented, this paper also proposes a novel method for dynamic repeatability comparisons of tracking instruments. © 2011 Springer-Verlag London Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our nation’s highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of automation (specifically Global Positioning Systems (GPS)) and Information and Communications Technology (ICT) through the creation of a Total Jobsite Management Tool (TJMT) in construction contractor companies can revolutionize the way contractors do business. The key to this integration is the collection and processing of real-time GPS data that is produced on the jobsite for use in project management applications. This research study established the need for an effective planning and implementation framework to assist construction contractor companies in navigating the terrain of GPS and ICT use. An Implementation Framework was developed using the Action Research approach. The framework consists of three components, as follows: (i) ICT Infrastructure Model, (ii) Organizational Restructuring Model, and (iii) Cost/Benefit Analysis. The conceptual ICT infrastructure model was developed for the purpose of showing decision makers within highway construction companies how to collect, process, and use GPS data for project management applications. The organizational restructuring model was developed to assist companies in the analysis and redesign of business processes, data flows, core job responsibilities, and their organizational structure in order to obtain the maximum benefit at the least cost in implementing GPS as a TJMT. A cost-benefit analysis which identifies and quantifies the cost and benefits (both direct and indirect) was performed in the study to clearly demonstrate the advantages of using GPS as a TJMT. Finally, the study revealed that in order to successfully implement a program to utilize GPS data as a TJMT, it is important for construction companies to understand the various implementation and transitioning issues that arise when implementing this new technology and business strategy. In the study, Factors for Success were identified and ranked to allow a construction company to understand the factors that may contribute to or detract from the prospect for success during implementation. The Implementation Framework developed as a result of this study will serve to guide highway construction companies in the successful integration of GPS and ICT technologies for use as a TJMT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our national highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased pressure to control costs and increased competition has prompted health care managers to look for tools to effectively operate their institutions. This research sought a framework for the development of a Simulation-Based Decision Support System (SB-DSS) to evaluate operating policies. A prototype of this SB-DSS was developed. It incorporates a simulation model that uses real or simulated data. ER decisions have been categorized and, for each one, an implementation plan has been devised. Several issues of integrating heterogeneous tools have been addressed. The prototype revealed that simulation can truly be used in this environment in a timely fashion because the simulation model has been complemented with a series of decision-making routines. These routines use a hierarchical approach to organize the various scenarios under which the model may run and to partially reconfigure the ARENA model at run time. Hence, the SB-DSS tailors its responses to each node in the hierarchy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive investigation has been conducted on network data, especially weighted network in the form of symmetric matrices with discrete count entries. Motivated by statistical inference on multi-view weighted network structure, this paper proposes a Poisson-Gamma latent factor model, not only separating view-shared and view-specific spaces but also achieving reduced dimensionality. A multiplicative gamma process shrinkage prior is implemented to avoid over parameterization and efficient full conditional conjugate posterior for Gibbs sampling is accomplished. By the accommodating of view-shared and view-specific parameters, flexible adaptability is provided according to the extents of similarity across view-specific space. Accuracy and efficiency are tested by simulated experiment. An application on real soccer network data is also proposed to illustrate the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Excerpt] In late January, first-year students in the Baker Program in Real Estate attended the first annual domestic real estate trek as part of the program’s newly revised curriculum. For this inaugural trip, students visited San Francisco and Silicon Valley, two of the nation’s most active real estate markets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the impact of S&P index membership on REIT stock returns. Given the hybrid nature of REITs, their returns may become more like those of other indexed stocks and less like those of their underlying properties. The existing literature does not offer clear predictions on these potential outcomes. Taking advantage of the inclusion of REITs in major S&P indexes starting in 2001, we find that shared index membership significantly increases the correlation between REIT returns after controlling for the stock characteristics that determine index membership. We also document that index membership enhances the link between REIT stock returns and the performance of the underlying real estate, consistent with improved pricing efficiency. REIT investors appear to be able to enjoy the benefits of improved visibility and liquidity associated with index membership as well as the exposure to underlying real estate markets and the related benefits of diversification.