940 resultados para RNA sequence
Resumo:
In plants, double-stranded RNA (dsRNA) is an effective trigger of RNA silencing, and several classes of endogenous small RNA (sRNA), processed from dsRNA substrates by DICER-like (DCL) endonucleases, are essential in controlling gene expression. One such sRNA class, the microRNAs (miRNAs) control the expression of closely related genes to regulate all aspects of plant development, including the determination of leaf shape, leaf polarity, flowering time, and floral identity. A single miRNA sRNA silencing signal is processed from a long precursor transcript of nonprotein-coding RNA, termed the primary miRNA (pri-miRNA). A region of the pri-miRNA is partially self-complementary allowing the transcript to fold back onto itself to form a stem-loop structure of imperfectly dsRNA. Artificial miRNA (amiRNA) technology uses endogenous pri-miRNAs, in which the miRNA and miRNA*(passenger strand of the miRNA duplex) sequences have been replaced with corresponding amiRNA/ amiRNA*sequences that direct highly efficient RNA silencing of the targeted gene. Here, we describe the rules for amiRNA design, as well as outline the PCR and bacterial cloning procedures involved in the construction of an amiRNA plant expression vector to control target gene expression in Arabidopsis thaliana. © 2014 Springer Science+Business Media New York.
Resumo:
Genetic studies are revealing the pathway for RNA-mediated gene silencing. Short RNA molecules are the key, giving sequence specificity for RNA degradation and mediating communication within and between cells; these short RNAs are common to transcriptional and post-transcriptional silencing pathways. The expression of transgenes in plants varies between independent transformants and there are many examples where the transgenic trait is not expressed, or disappears in subsequent generations, despite the presence of the transgene. This loss of a trait, but not of the transgene, has become known as gene silencing and can take two forms, transcriptional or post-transcriptional. As their names imply, transcriptional gene silencing occurs when a transgene is not transcribed, whereas in post-transcriptional gene silencing, the transgene mRNA is produced but degraded before it is translated (reviewed in [1]). Both forms of silencing seem to be the result of inherent mechanisms for protecting plants against mobile or invading DNA — for example, transposable elements or the T-DNA of Agrobacterium — or RNA viruses. Plants are not alone in their capacity for transgene silencing; both forms of silencing occur in flies and fungi, where it is known as RIP or quelling, while nematodes exhibit post-transcriptional silencing, generally referred to as RNA interference (RNAi). A clearer picture of the mechanisms and relationships of the different types of transgene silencing is beginning to emerge from a number of recent studies [2], [3], [4], [5], [6], [7] and [8]. Some of these studies [2], [3], [4] and [5] have enhanced our understanding of the steps within the post-transcriptional silencing pathway, and others [6], [7] and [8] have demonstrated that the two forms of silencing may be mechanistically linked.
Resumo:
It is known that 22-nucleotide (nt) microRNAs (miRNAs) derived from asymmetric duplexes trigger phased small-interfering RNA (phasiRNA) production from complementary targets. Here we investigate the efficacy of 22-nt artificial miRNA (amiRNA)-mediated RNA silencing relative to conventional hairpin RNA (hpRNA) and 21-nt amiRNA-mediated RNA silencing. CHALCONE SYNTHASE (CHS) was selected as a target in Arabidopsis thaliana due to the obvious and non-lethal loss of anthocyanin accumulation upon widespread RNA silencing. Over-expression of CHS in the pap1-D background facilitated visual detection of both local and systemic RNA silencing. RNA silencing was initiated in leaf tissues from hpRNA and amiRNA plant expression vectors under the control of an Arabidopsis RuBisCo small subunit 1A promoter (SSU). In this system, hpRNA expression triggered CHS silencing in most leaf tissues but not in roots or seed coats. Similarly, 21-nt amiRNA expression from symmetric miRNA/miRNA* duplexes triggered CHS silencing in all leaf tissues but not in roots or seed coats. However, 22-nt amiRNA expression from an asymmetric duplex triggered CHS silencing in all tissues, including roots and seed coats, in the majority of plant lines. This widespread CHS silencing required RNA-DEPENDENT RNA POLYMERASE6-mediated accumulation of phasiRNAs from the endogenous CHS transcript. These results demonstrate the efficacy of asymmetric 22-nt amiRNA-directed RNA silencing and associated phasiRNA production and activity, in mediating widespread RNA silencing of an endogenous target gene. Asymmetric 22-nt amiRNA-directed RNA silencing requires little modification of existing amiRNA technology and is expected to be effective in suppressing other genes and/or members of gene families.
Resumo:
Drosophila possesses the core gene silencing machinery but, like all insects, lacks the canonical RNA-dependent RNA polymerases (RdRps) that in C. elegans either trigger or enhance two major small RNA-dependent gene silencing pathways. Introduction of two different nematode RdRps into Drosophila showed them to be functional, resulting in differing silencing activities. While RRF-1 enhanced transitive dsRNA-dependent silencing, EGO-1 triggered dsRNA-independent silencing, specifically of transgenes. The strain w; da-Gal4; UAST-ego-1, constitutively expressing ego-1, is capable of silencing transgene including dsRNA hairpin upon a single cross, which created a powerful tool for research in Drosophila. In C. elegans, EGO-1 is involved in transcriptional gene silencing (TGS) of chromosome regions that are unpaired during meiosis. There was no opportunity for meiotic interactions involving EGO-1 in Drosophila that would explain the observed transgene silencing. Transgene DNA is, however, unpaired during the pairing of chromosomes in embryonic mitosis that is an unusual characteristic of Diptera, suggesting that in Drosophila, EGO-1 triggers transcriptional silencing of unpaired DNA during embryonic mitosis. © 2012 Springer Basel.
Resumo:
We report here that the expression of endogenous microRNAs (miRNAs) can be efficiently silenced in Arabidopsis thaliana (Arabidopsis) using artificial miRNA (amiRNA) technology. We demonstrate that an amiRNA designed to target a mature miRNA directs silencing against all miRNA family members, whereas an amiRNA designed to target the stem-loop region of a miRNA precursor transcript directs silencing against only the individual family member targeted. Furthermore, our results indicate that amiRNAs targeting both the mature miRNA and stem-loop sequence direct RNA silencing through cleavage of the miRNA precursor transcript, which presumably occurs in the nucleus of a plant cell during the initial stages of miRNA biogenesis. This suggests that small RNA (sRNA)-guided RNA cleavage in plants occurs not only in the cytoplasm, but also in the nucleus. Many plant miRNA gene families have been identified via sequencing and bioinformatic analysis, but, to date, only a small tranche of these have been functionally characterized due to a lack of effective forward or reverse genetic tools. Our findings therefore provide a new and powerful reverse-genetic tool for the analysis of miRNA function in plants. © The Author 2010. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPP and IPPE, SIBS, CAS.
Resumo:
RNA-dependent RNA polymerase (RDR) activities were readily detected in extracts from cauliflower and broccoli florets, Arabidopsis thaliana (L.) Heynh callus tissue and broccoli nuclei. The synthesis of complementary RNA (cRNA) was independent of a RNA primer, whether or not the primer contained a 3′ terminal 2′-O-methyl group or was phosphorylated at the 5′ terminus. cRNA synthesis in plant extracts was not affected by loss-of-function mutations in the DICER-LIKE (DCL) proteins DCL2, DCL3, and DCL4, indicating that RDRs function independently of these DCL proteins. A loss-of-function mutation in RDR1, RDR2 or RDR6 did not significantly reduce the amount of cRNA synthesis. This indicates that these RDRs did not account for the bulk RDR activities in plant extracts, and suggest that either the individual RDRs each contribute a fraction of polymerase activity or another RDR(s) is predominant in the plant extract. © CSIRO 2008.
Resumo:
Since the discovery of RNAi, its mechanism in plants and animals has been intensively studied, widely exploited as a research tool, and used for a number of potential commercial applications. In this article, we discuss the platforms for delivering RNAi in plants. We provide a brief background to these platforms and concentrate on discussing the more recent advances, comparing the RNAi technologies used in plants with those used in animals, and trying to predict the ways in which RNAi technologies may further develop. © 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Posttranscriptional silencing (PTGS) in plants, nematodes, Drosophila, and perhaps all eukaryotes operates by sequence-specific degradation or translational inhibition of the target mRNA. These processes are mediated by duplexed RNA. In Drosophila and nematodes, double-stranded (ds)RNA or self-complementary RNA is processed into fragments of approximately 21 nt by Dicer-1 [1, 2]. These small interfering RNAs (siRNAs) serve as guides to target degradation of homologous single-stranded (ss)RNA [1, 3]. In some cases, the approximately 21 nt guide fragments derived from endogenous, imperfectly self-complementary RNAs cause translational inhibition of their target mRNAs, with which they have substantial, but not perfect sequence complementarity [4-6]. These small temporal RNAs (stRNAs) belong to a class of noncoding microRNAs (miRNAs), 20-24 nt in length, that are found in flies, plants, nematodes, and mammals [4, 6-12]. In nematodes, the Dicer-1 enzyme catalyzes the production of both siRNA and stRNA [2, 13-15]. Mutation of the Arabidopsis Dicer-1 homolog, CARPEL FACTORY (CAF), blocks miRNA production [1, 4, 16-18]. Here, we report that the same caf mutant does not block either PTGS or siRNA production induced by self-complementary hairpin RNA. This suggests either that this mutation only impairs miRNA formation or, more interestingly, that plants have two distinct dicer-like enzymes, one for miRNA and another for siRNAi production.
Resumo:
RNA silencing-related mechanisms have been documented in almost all living organisms and RNA silencing is now used as board term to describe the vast array of related processes involving RNA–RNA, RNA–DNA, RNA–protein or protein–protein interactions that ultimately result in the repression of gene expression. In plants, the parallel RNA silencing pathways have evolved to extraordinary levels of complexity and diversity, playing crucial roles in providing protection against invading nucleic acids derived from viruses or replicating transposons, controlling chromatin modifications as well as regulating endogenous gene expression to ensure normal plant growth and development. The aims of this chapter are (1) to provide an overview of the initial curious observations of RNA silencing-related phenomena in plants, (2) to outline the parallel gene silencing pathways of plants, and (3) to discuss current applications of RNA silencing technologies to not only study but also modify plant development
Resumo:
Recent research has revealed the existence of an elegant defence mechanism in plants and lower eukaryotes. The mechanism, known in plants as post-transcriptional gene silencing, works through sequence-specific degradation of RNA. It appears to be directed by double-stranded RNA, associated with the production of short 21-25 nt RNAs, and spread through the plant by a diffusible signal. The short RNAs are implicated as the guides for both a nuclease complex that degrades the mRNA and a methyltransferase complex that methylates the DNA of silenced genes. It has also been suggested that these short RNAs might be the mobile silencing signal, a suggestion that has been challenged recently.
Resumo:
Post-transcriptional silencing of plant genes using anti-sense or co-suppression constructs usually results in only a modest proportion of silenced individuals. Recent work has demonstrated the potential for constructs encoding self-complementary 'hairpin' RNA (hpRNA) to efficiently silence genes. In this study we examine design rules for efficient gene silencing, in terms of both the proportion of independent transgenic plants showing silencing, and the degree of silencing. Using hpRNA constructs containing sense/anti-sense arms ranging from 98 to 853 nt gave efficient silencing in a wide range of plant species, and inclusion of an intron in these constructs had a consistently enhancing effect. Intron-containing constructs (ihpRNA) generally gave 90-100% of independent transgenic plants showing silencing. The degree of silencing with these constructs was much greater than that obtained using either co-suppression or anti-sense constructs. We have made a generic vector, pHANNIBAL, that allows a simple, single PCR product from a gene of interest to be easily converted into a highly effective ihpRNA silencing construct. We have also created a high-throughput vector, pHELLSGATE, that should facilitate the cloning of gene libraries or large numbers of defined genes, such as those in EST collections, using an in vitro recombinase system. This system may facilitate the large-scale determination and discovery of plant gene functions in the same way as RNAi is being used to examine gene function in Caenorhabditis elegans.
Resumo:
Barley yellow dwarf virus-PAV (BYDV-PAV) is the most serious and widespread virus of cereals worldwide. Natural resistance genes against this luteovirus give inadequate control, and previous attempts to introduce synthetic resistance into cereals have produced variable results. In an attempt to generate barley with protection against BYDV-PAV, plants were transformed with a transgene designed to produce hairpin (hp)RNA containing BYDV-PAV sequences. From 25 independent barley lines transformed with the BYDV-PAV hpRNA construct, nine lines showed extreme resistance to the virus and the majority of these contained a single transgene. In the progeny of two independent transgenic lines, inheritance of a single transgene consistently correlated with protection against BYDV-PAV. This protection was rated as immunity because the virus could not be detected in the challenged plants by ELISA nor recovered by aphid feeding experiments. In the field, BYDV-PAV is sometimes associated with the related luteovirus Cereal yellow dwarf virus-RPV (CYDV-RPV). When the transgenic plants were challenged with BYDV-PAV and CYDV-RPV together, the plants were susceptible to CYDV-RPV but immune to BYDV-PAV. This shows that the immunity is virus-specific and not broken down by the presence of CYDV. It suggests that CYDV-RPV does not encode a silencing-suppressor gene or that its product does not protect BYDV-PAV against the plant's RNAi-like defence mechanism. Either way, our results indicate that the BYDV-PAV immunity will be robust in the field and is potentially useful in minimizing losses in cereal production worldwide.
Resumo:
The complete nucleotide sequence of the genome segment 5 (S5) of a Thai isolate of rice ragged stunt virus (RRSV) was determined. The 2682 nucleotide sequence contains a single long open reading frame capable of encoding a polypeptide with a molecular mass of ~91 kDa. Polypeptides encoded by various truncated cDNAs of S5 were expressed using the pGEX fusion protein vector and the highest level of fusion protein was obtained from a construct encoding a hydrophilic region of S5 protein. Antibodies raised against this fusion protein recognized a minor polypeptide, with a molecular mass of ~ 91 kDa, that was present in purified preparations of RRSV particles, infected insect vectors and infected rice plants. This indicates that RRSV S5 encodes a minor structural protein. Comparing the RRSV S5 sequence with sequences of other reo-viruses did not reveal any significant sequence similarities.
Resumo:
Complementary DNAs covering the entire RNA genome of soybean dwarf luteovirus (SDV) were cloned and sequenced. Computer analysis of the 5861 nucleotide sequence revealed five major open reading frames (ORFs) possessing conservation of sequence and organisation with known luteovirus sequences. Comparative analyses of the genome structure show that SDV shares sequence homology and features of gene organisation with barley yellow dwarf virus (PAV isolate) in the 5' half of the genome, yet is more closely related to potato leafroll virus in its 3' coding regions. In addition, SDV differs from other known luteoviruses in possessing an exceptionally long 3' terminal sequence with no apparent coding capacity. We conclude from these data that the SDV genome represents a third variant genome type in the luteovirus group.