931 resultados para Quasi-stationary Distributions
Resumo:
The present work is organized into six chapters. Bivariate extension of Burr system is the subject matter of Chapter II. The author proposes to introduce a general structure for the family in two dimensions and present some properties of such a system. Also in Chapter II some new distributions, which are bivariate extension of univariate distributions in Burr (1942) is presented.. In Chapter III, concentrates on characterization problems of different forms of bivariate Burr system. A detailed study of the distributional properties of each member of the Burr system has not been undertaken in literature. With this aim in mind in Chapter IV is discussed with two forms of bivariate Burr III distribution. In Chapter V the author Considers the type XII, type II and type IX distributions. Present work concludes with Chapter VI by pointing out the multivariate extension for Burr system. Also in this chapter the concept of multivariate reversed hazard rates as scalar and vector quantity is introduced.
Some characterization problems associated with the bivariate exponential and geometric distributions
Resumo:
It is highly desirable that any multivariate distribution possessescharacteristic properties that are generalisation in some sense of the corresponding results in the univariate case. Therefore it is of interest to examine whether a multivariate distribution can admit such characterizations. In the exponential context, the question to be answered is, in what meaning— ful way can one extend the unique properties in the univariate case in a bivariate set up? Since the lack of memory property is the best studied and most useful property of the exponential law, our first endeavour in the present thesis, is to suitably extend this property and its equivalent forms so as to characterize the Gumbel's bivariate exponential distribution. Though there are many forms of bivariate exponential distributions, a matching interest has not been shown in developing corresponding discrete versions in the form of bivariate geometric distributions. Accordingly, attempt is also made to introduce the geometric version of the Gumbel distribution and examine several of its characteristic properties. A major area where exponential models are successfully applied being reliability theory, we also look into the role of these bivariate laws in that context. The present thesis is organised into five Chapters
Resumo:
In this thesis the queueing-inventory models considered are analyzed as continuous time Markov chains in which we use the tools such as matrix analytic methods. We obtain the steady-state distributions of various queueing-inventory models in product form under the assumption that no customer joins the system when the inventory level is zero. This is despite the strong correlation between the number of customers joining the system and the inventory level during lead time. The resulting quasi-birth-anddeath (QBD) processes are solved explicitly by matrix geometric methods
Resumo:
In this article, we study reliability measures such as geometric vitality function and conditional Shannon’s measures of uncertainty proposed by Ebrahimi (1996) and Sankaran and Gupta (1999), respectively, for the doubly (interval) truncated random variables. In survival analysis and reliability engineering, these measures play a significant role in studying the various characteristics of a system/component when it fails between two time points. The interrelationships among these uncertainty measures for various distributions are derived and proved characterization theorems arising out of them
Resumo:
In this article we introduce some structural relationships between weighted and original variables in the context of maintainability function and reversed repair rate. Furthermore, we prove some characterization theorems for specific models such as power, exponential, Pareto II, beta, and Pearson system of distributions using the relationships between the original and weighted random variables
Resumo:
Inthis paper,we define partial moments for a univariate continuous random variable. A recurrence relationship for the Pearson curve using the partial moments is established. The interrelationship between the partial moments and other reliability measures such as failure rate, mean residual life function are proved. We also prove some characterization theorems using the partial moments in the context of length biased models and equilibrium distributions
Resumo:
In this paper, we examine the relationships between log odds rate and various reliability measures such as hazard rate and reversed hazard rate in the context of repairable systems. We also prove characterization theorems for some families of distributions viz. Burr, Pearson and log exponential models. We discuss the properties and applications of log odds rate in weighted models. Further we extend the concept to the bivariate set up and study its properties.
Resumo:
In this paper, a family of bivariate distributions whose marginals are weighted distributions in the original variables is studied. The relationship between the failure rates of the derived and original models are obtained. These relationships are used to provide some characterizations of specific bivariate models
Resumo:
In this thesis, certain continuous time inventory problems with positive service time under local purchase guided by N/T-policy are analysed. In most of the cases analysed, we arrive at stochastic decomposition of system states, that is, the joint distribution of the system states is obtained as the product of marginal distributions of the components. The thesis is divided into ve chapters
Resumo:
The classical methods of analysing time series by Box-Jenkins approach assume that the observed series uctuates around changing levels with constant variance. That is, the time series is assumed to be of homoscedastic nature. However, the nancial time series exhibits the presence of heteroscedasticity in the sense that, it possesses non-constant conditional variance given the past observations. So, the analysis of nancial time series, requires the modelling of such variances, which may depend on some time dependent factors or its own past values. This lead to introduction of several classes of models to study the behaviour of nancial time series. See Taylor (1986), Tsay (2005), Rachev et al. (2007). The class of models, used to describe the evolution of conditional variances is referred to as stochastic volatility modelsThe stochastic models available to analyse the conditional variances, are based on either normal or log-normal distributions. One of the objectives of the present study is to explore the possibility of employing some non-Gaussian distributions to model the volatility sequences and then study the behaviour of the resulting return series. This lead us to work on the related problem of statistical inference, which is the main contribution of the thesis
Resumo:
The present work is intended to discuss various properties and reliability aspects of higher order equilibrium distributions in continuous, discrete and multivariate cases, which contribute to the study on equilibrium distributions. At first, we have to study and consolidate the existing literature on equilibrium distributions. For this we need some basic concepts in reliability. These are being discussed in the 2nd chapter, In Chapter 3, some identities connecting the failure rate functions and moments of residual life of the univariate, non-negative continuous equilibrium distributions of higher order and that of the baseline distribution are derived. These identities are then used to characterize the generalized Pareto model, mixture of exponentials and gamma distribution. An approach using the characteristic functions is also discussed with illustrations. Moreover, characterizations of ageing classes using stochastic orders has been discussed. Part of the results of this chapter has been reported in Nair and Preeth (2009). Various properties of equilibrium distributions of non-negative discrete univariate random variables are discussed in Chapter 4. Then some characterizations of the geo- metric, Waring and negative hyper-geometric distributions are presented. Moreover, the ageing properties of the original distribution and nth order equilibrium distribu- tions are compared. Part of the results of this chapter have been reported in Nair, Sankaran and Preeth (2012). Chapter 5 is a continuation of Chapter 4. Here, several conditions, in terms of stochastic orders connecting the baseline and its equilibrium distributions are derived. These conditions can be used to rede_ne certain ageing notions. Then equilibrium distributions of two random variables are compared in terms of various stochastic orders that have implications in reliability applications. In Chapter 6, we make two approaches to de_ne multivariate equilibrium distribu- tions of order n. Then various properties including characterizations of higher order equilibrium distributions are presented. Part of the results of this chapter have been reported in Nair and Preeth (2008). The Thesis is concluded in Chapter 7. A discussion on further studies on equilib- rium distributions is also made in this chapter.
Resumo:
Theory Division Department of Physics
Resumo:
Ausgangspunkt der Dissertation ist ein von V. Maz'ya entwickeltes Verfahren, eine gegebene Funktion f : Rn ! R durch eine Linearkombination fh radialer glatter exponentiell fallender Basisfunktionen zu approximieren, die im Gegensatz zu den Splines lediglich eine näherungsweise Zerlegung der Eins bilden und somit ein für h ! 0 nicht konvergentes Verfahren definieren. Dieses Verfahren wurde unter dem Namen Approximate Approximations bekannt. Es zeigt sich jedoch, dass diese fehlende Konvergenz für die Praxis nicht relevant ist, da der Fehler zwischen f und der Approximation fh über gewisse Parameter unterhalb der Maschinengenauigkeit heutiger Rechner eingestellt werden kann. Darüber hinaus besitzt das Verfahren große Vorteile bei der numerischen Lösung von Cauchy-Problemen der Form Lu = f mit einem geeigneten linearen partiellen Differentialoperator L im Rn. Approximiert man die rechte Seite f durch fh, so lassen sich in vielen Fällen explizite Formeln für die entsprechenden approximativen Volumenpotentiale uh angeben, die nur noch eine eindimensionale Integration (z.B. die Errorfunktion) enthalten. Zur numerischen Lösung von Randwertproblemen ist das von Maz'ya entwickelte Verfahren bisher noch nicht genutzt worden, mit Ausnahme heuristischer bzw. experimenteller Betrachtungen zur sogenannten Randpunktmethode. Hier setzt die Dissertation ein. Auf der Grundlage radialer Basisfunktionen wird ein neues Approximationsverfahren entwickelt, welches die Vorzüge der von Maz'ya für Cauchy-Probleme entwickelten Methode auf die numerische Lösung von Randwertproblemen überträgt. Dabei werden stellvertretend das innere Dirichlet-Problem für die Laplace-Gleichung und für die Stokes-Gleichungen im R2 behandelt, wobei für jeden der einzelnen Approximationsschritte Konvergenzuntersuchungen durchgeführt und Fehlerabschätzungen angegeben werden.
Resumo:
We consider a first order implicit time stepping procedure (Euler scheme) for the non-stationary Stokes equations in smoothly bounded domains of R3. Using energy estimates we can prove optimal convergence properties in the Sobolev spaces Hm(G) (m = 0;1;2) uniformly in time, provided that the solution of the Stokes equations has a certain degree of regularity. For the solution of the resulting Stokes resolvent boundary value problems we use a representation in form of hydrodynamical volume and boundary layer potentials, where the unknown source densities of the latter can be determined from uniquely solvable boundary integral equations’ systems. For the numerical computation of the potentials and the solution of the boundary integral equations a boundary element method of collocation type is used. Some simulations of a model problem are carried out and illustrate the efficiency of the method.