975 resultados para Poly-beta-hydroxybutyrate
Resumo:
One of the monoclonal antibodies raised against bovine beta-lactoglobulin reacted with human serum retinol binding protein. The finding that this monoclonal antibody also reacted with the serum retinol binding proteins isolated from other animals, suggested that this epitopic conformation is conserved among these proteins. Using ELISA and various synthetic peptides of defined sequence, we show in this paper that the epitope defined by this monoclonal antibody comprises of the highly conserved core sequence of DTDY present in beta-lactoglobulin and retinol binding proteins.
Resumo:
A super-secondary structural motif comprising two orthogonally oriented beta-strands connected by short linking segments of <5 residues has been identified from a data set of 65 independent protein crystal structures. Of the 42 examples from 14 proteins, a vast majority have only a single residue as the linking element. Analysis of the conformational angles at the junction reveals that the recently described type VIII beta-turn occurs frequently at the connecting hinge, while the type II beta-turn is also fairly common.
Resumo:
The molecular and crystal structures of three compounds, representing the repeating units of the -bend ribbon (an approximate 310-helix, with an intramolecular hydrogen-bonding donor every two residues), have been determined by x-ray diffraction. They are Boc-Aib-Hib-NHBzl, Z-Aib-Hib-NHBzl, and Z-L-Hyp-Aib-NHMe (Aib, -aminoisobutyric acid; Bzl, benzyl; Boc, t-butyloxycarbonyl; Hyp, hydroxyproline Hib, -hydroxyisobutyric acid; Z, benzyloxycarbonyl). The two former compounds are folded in a -bend conformation: type III (III) for Boc-Aib-Hib-NHBzl, while type II (II) for the Z analogue. Conversely, the structure of Z-L-Hyp-Aib-NHMe, although not far from a type II -bend, is partially open.
Resumo:
A diastereomeric mixture of the tripeptide Boc-Ala-Ile-Aib-OMe crystallized in the space group P1 from CH3OH/H2O. The unit cell parameters are a = 10.593(2) A, b = 14.377(3) A, c = 17.872(4) A, alpha = 104.41(2) degrees, beta = 90.55(2) degrees, gamma = 106.91(2) degrees, V = 2512.4 A3, Z = 4. X-Ray crystallographic studies show the presence of four molecules in the asymmetric unit consisting of two pairs of diastereomeric peptides, Boc-L-Ala-L-Ile-Aib-OMe and Boc-L-Ala-D-Ile-Aib-OMe. The four molecules in the asymmetric unit form a rarely found mixed antiparallel and parallel beta-sheet hydrogen bond motif. The Ala and (L,D)-Ile residues in all the four molecules adopt the extended conformations, while the phi, psi values of the Aib residues are in the right-handed helical region. In one of the molecules the Ile sidechain adopts the unusual gauche conformation about the C beta-C gamma bond.
Resumo:
Diaryl disulfides and diselenides undergo facile cleavage on treatment with rongalite (sodium hydroxymethanesulfinate) to generate the corresponding thiolate and selenolate species in Situ, which effect the ring opening of aziridines and epoxides in a regioselective manner. A simple, mild, cost-effective protocol has been developed to prepare beta-amino and beta-hydroxy sulfides and selenides in a one-pot operation.
Resumo:
An easy and convenient one-step procedure for the conversion of alpha,beta-unsaturated carbonyl compounds into their corresponding bromo-enones using NBS-Et3N center dot 3HBr in the presence of potassium carbonate in dichloromethane at 0 degrees C to room temperature under very mild conditions in high yields and significantly shorter times, is reported.
Resumo:
Sodium ethylselenolates with functional groups X (where X = -OH, -COOH, -COOMe and -COOEt) at beta-carbon were prepared in situ by reductive cleavage of corresponding diselenide with NaBH4 either in methanol or aqueous ammonia. Treatment of these selenolates with [M2Cl2(mu-Cl)(2)(PR'(3))(2)] (M = Pd or Pt; PR'(3) = PMePh2, PnPr(3)) in different stoichiometry yielded various bi- and tri-nuclear complexes. The homoleptic hexanuclear complexes [Pd(mu-SeCH2CH2X)(2)](6) (X = OH, COOH, COOEt), were obtained by reacting Na2PdCl4 with NaSeCH2CH2X. All these complexes have been fully characterized. Molecular structures of ethylselenolates containing hydroxyl and carboxylic acid groups revealed solid state associated structures through inter-molecular hydrogen bond interactions. Trinuclear complex, [Pd3Cl2(mu-SeCH2CH2COOH)(4)(PnPr(3))(2)] (3a), was disposed in a boat form unlike chair conformation observed for the corresponding methylester complex. The effect of beta-functionality in ethylselenolate ligands towards reactivity, structures and thermal properties of palladium and platinum complexes has been extensively Studied.
Resumo:
Poly(vinyl pyrrolidone) and poly(methacrylic acid) multilayer capsules based on hydrogen bonding have been prepared by the layer-by-layer approach and used to encapsulate and release rifampicin, an antituberculosis drug. Removal of silica core using a buffer of ammonium fluoride and hydrofluoric acid at about pH 3 was found to produce better capsules than hydrofluoric acid alone. An eight-layered capsule had a wall thickness of 20 rim. Maximum encapsulation was found to be about 86 mu g at 40 degrees C with 1 +/- 0.2 x 10(6) capsules. Release studies showed a burst kind of release and maximum release was obtained above pH 7 where the capsules disintegrate rapidly thereby releasing the drug in a short period. Interactions studies with Mycobacterium smegmatis showed that the capsules were cytocompatible and the released drug functioned with the same efficacy as the free drug.
Resumo:
The characterization and properties of trans-(X)-[RuX2(CO)(2)(alpha/beta-NaiPy)] (1, 2) (alpha-NaiPy (a), beta-NaiPy (b); X = Cl (1), I (2)) are described in this work. The structures are confirmed by single crystal X-ray diffraction studies. Reaction of these compounds with Me3NO in MeCN has isolated monocarbonyl trans-(X)-RuX2(CO)(MeCN)(alpha/beta-NaiPy)] (3, 4). The complexes show intense emission properties. Quantum yields of 1 and 2 (phi= 0.02-0.08) are higher than 3 and 4 (phi = 0.006-0.015). Voltammogram shows higher Ru(III)/Ru(II) (1.3-1.5 V) potential of 1 and 2 than that of 3 and 4 (0.8-0.9 V) that may be due to coordination of two pi-acidic CO groups in former. The electronic spectra and redox properties of the complexes are compared with the results obtained by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) using polarizable continuum model (CPCM).
Resumo:
A direct borohydride fuel cell (DBFC) employing a poly (vinyl alcohol)hydrogel membrane electrolyte (PHME) is reported. The DBFC employs an AB(5) Misch metal alloy as anode and a goldplated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous acidified solution of hydrogen peroxide as oxidant. Room temperature performances of the PHME-based DBFC in respect of peak power outputs; ex-situ cross-over of oxidant, fuel,anolyte and catholyte across the membrane electrolytes; utilization efficiencies of fuel and oxidant, as also cell performance durability are compared with a similar DBFC employing a NafionA (R)-117 membrane electrolyte (NME). Peak power densities of similar to 30 and similar to 40 mW cm(-2) are observed for the DBFCs with PHME and NME, respectively. The crossover of NaBH4 across both the membranes has been found to be very low. The utilization efficiencies of NaBH4 and H2O2 are found to be similar to 24 and similar to 59%, respectively for the PHME-based DBFC; similar to 18 and similar to 62%, respectively for the NME-based DBFC. The PHME and NME-based DBFCs exhibit operational cell potentials of similar to 1 center dot 2 and similar to 1 center dot 4 V, respectively at a load current density of 10 mA cm(-2) for similar to 100 h.
Resumo:
Fabrication of multilayer ultrathin composite films composed of nanosized titanium dioxide particles (P25, Degussa) and polyelectrolytes (PELs), such as poly(allyl amine hydrochloride) (PAH) and poly(styrene sulfonate sodium salt) (PSS), on glass substrates using the layer-by-layer (LbL) assembly technique and its potentia application for the photodegradation of rhodamine B under ultraviolet (UV) irradiation has been reported. The polyelectrolytes and TiO2 were deposited on glass substrates at pH 2.5 and the growth of the multilayers was studied using UV/vis speccrophotometer. Thicknes measurements of the films showed a linear increase in film thickness with increase in number of bilayers. The surface microstructure of the thin films was characterized by field emission scanning electron microscope. The ability of the catalysts immobilized by this technique was compared with TiO2 films prepared by drop casting and spin coating methods. Comparison has been made in terms of film stability and photodegradation of rhodamine B. Process variables such as the effect of surface area of the multilayers, umber of bilayers, and initial dye concentration on photodegradation of rhodamine B were studied. Degradation efficiency increased with increase in number of catalysts (total surface area) and bilayers. Kinetics analysis indicated that the photodegradation rates follow first order kinetics. Under maximum loading of TiO2, with five catalyst slides having 20 bilayers of polyelectrolyte/TiO2 on each, 100 mL of 10 mg/L dye solution could be degraded completely in 4 h. The same slides could be reused with the same efficiency for several cycles. This study demonstrates that nanoparticles can be used in wastewater treatment using a simple immobilization technique. This makes the process an attractive option for scale up.
Resumo:
Natural peptide libraries often contain cyclodepsipeptides containing alpha or beta hydroxy residues. Extracts of fungal hyphae of Isaria yield a microheterogenous cyclodepsipeptide mixture in which two classes of molecules can be identified by mass spectral fragmentation of negative ions. In the case of isaridins, which contain an alpha-hydroxy residue and a beta-amino acid residue, a characteristic product ion corresponding to a neutral loss of 72 Da is obtained. hi addition, neutral loss of water followed by a 72 Da loss is also observed. Two distinct modes of fragmentation rationalize the observed product ion distribution. The neutral loss of 72 Da has also been obtained for a roseotoxin component, which is also an alpha-hydroxy residue containing cyclodepsipeptide. In the case of isariins, which contain a beta-hydroxy acid residue, ring opening and subsequent loss of the terminal residue as an unsaturated ketene fragment, rationalizes the observed product ion formation. Fragmentation of negative ions provide characteristic neutral losses, which are diagnostic of the presence of alpha-hydroxy or beta-hydroxy residues.
Resumo:
The copolymers, poly(methyl methacrylate-co-methyl acrylate) (PMMAMA), poly(methyl methacrylate-co-ethyl acrylate) (PMMAEA) and poly(methyl methacrylate-co-butyl acrylate) (PMMABA), of different compositions were synthesized and characterized. The effect of alkyl acrylate content, alkyl group substituents and solvents on the ultrasonic degradation of these copolymers was studied. A model based on continuous distribution kinetics was used to study the kinetics of degradation. The rate coefficients were obtained by fitting the experimental data with the model. The linear dependence of the rate coefficients on the logarithm of the vapor pressure of the solvent indicated that vapor pressure is the crucial parameter that controls the degradation process. The rate of degradation increases with an increase in the alkyl acrylate content. At any particular copolymer composition, the rate of degradation follows the order: PMMAMA > PMMAEA > PMMABA. It was observed that the degradation rate coefficient varies linearly with the mole percentage of the alkyl acrylate in the copolymer.
Resumo:
Transforming growth factor β signalling through Smad3 in allergy Allergic diseases, such as atopic dermatitis, asthma, and contact dermatitis are complex diseases influenced by both genetic and environmental factors. It is still unclear why allergy and subsequent allergic disease occur in some individuals but not in others. Transforming growth factor (TGF)-β is an important immunomodulatory and fibrogenic factor that regulates cellular processes in injured and inflamed skin. TGF-β has a significant role in the regulation of the allergen-induced immune response participating in the development of allergic and asthmatic inflammation. TGF-β is known to be an immunomodulatory factor in the progression of delayed type hypersensitivity reactions and allergic contact dermatitis. TGF-β is crucial in regulating the cellular responses involved in allergy, such as differentiation, proliferation and migration. TGF-β signals are delivered from the cytoplasm to the nucleus by TGF-β signal transducers called Smads. Smad3 is a major signal transducer in TGF-β -signalling that controls the expression of target genes in the nucleus in a cell-type specific manner. The role of TGF-β-Smad3 -signalling in the immunoregulation and pathophysiology of allergic disorders is still poorly understood. In this thesis, the role of TGF-β-Smad -signalling pathway using Smad3 -deficient knock out mice in the murine models of allergic diseases; atopic dermatitis, asthma and allergic contact reactions, was examined. Smad3-pathway regulates allergen induced skin inflammation and systemic IgE antibody production in a murine model atopic dermatitis. The defect in Smad3 -signalling decreased Th2 cytokine (IL-13 and IL-5) mRNA expression in the lung, modulated allergen induced specific IgG1 response, and affected mucus production in the lung in a murine model of asthma. TGF-β / Smad3 -signalling contributed to inflammatory hypersensitivity reactions and disease progression via modulation of chemokine and cytokine expression and inflammatory cell recruitment, cell proliferation and regulation of the specific antibody response in a murine model of contact hypersensitivity. TGF-β modulates inflammatory responses - at least partly through the Smad3 pathway - but also through other compensatory, non-Smad-dependent pathways. Understanding the effects of the TGF-β signalling pathway in the immune system and in disease models can help in elucidating the multilevel effects of TGF-β. Unravelling the mechanisms of Smad3 may open new possibilities for treating and preventing allergic responses, which may lead to severe illness and loss of work ability. In the future the Smad3 signalling pathway might be a potential target in the therapy of allergic diseases.