790 resultados para Pneumonia : Prediction
Resumo:
Abstract Objective: We aimed to determine the validity of two risk scores for patients with non-muscle invasive bladder cancer in different European settings, in patients with primary tumours. Methods: We included 1,892 patients with primary stage Ta or T1 non-muscle invasive bladder cancer who underwent a transurethral resection in Spain (n = 973), the Netherlands (n = 639), or Denmark (n = 280). We evaluated recurrence-free survival and progression-free survival according to the European Organisation for Research and Treatment of Cancer (EORTC) and the Spanish Urological Club for Oncological Treatment (CUETO) risk scores for each patient and used the concordance index (c-index) to indicate discriminative ability. Results: The 3 cohorts were comparable according to age and sex, but patients from Denmark had a larger proportion of patients with the high stage and grade at diagnosis (p,0.01). At least one recurrence occurred in 839 (44%) patients and 258 (14%) patients had a progression during a median follow-up of 74 months. Patients from Denmark had the highest 10- year recurrence and progression rates (75% and 24%, respectively), whereas patients from Spain had the lowest rates (34% and 10%, respectively). The EORTC and CUETO risk scores both predicted progression better than recurrence with c-indices ranging from 0.72 to 0.82 while for recurrence, those ranged from 0.55 to 0.61. Conclusion: The EORTC and CUETO risk scores can reasonably predict progression, while prediction of recurrence is more difficult. New prognostic markers are needed to better predict recurrence of tumours in primary non-muscle invasive bladder cancer patients.
Resumo:
The prediction filters are well known models for signal estimation, in communications, control and many others areas. The classical method for deriving linear prediction coding (LPC) filters is often based on the minimization of a mean square error (MSE). Consequently, second order statistics are only required, but the estimation is only optimal if the residue is independent and identically distributed (iid) Gaussian. In this paper, we derive the ML estimate of the prediction filter. Relationships with robust estimation of auto-regressive (AR) processes, with blind deconvolution and with source separation based on mutual information minimization are then detailed. The algorithm, based on the minimization of a high-order statistics criterion, uses on-line estimation of the residue statistics. Experimental results emphasize on the interest of this approach.
Resumo:
The linear prediction coding of speech is based in the assumption that the generation model is autoregresive. In this paper we propose a structure to cope with the nonlinear effects presents in the generation of the speech signal. This structure will consist of two stages, the first one will be a classical linear prediction filter, and the second one will model the residual signal by means of two nonlinearities between a linear filter. The coefficients of this filter are computed by means of a gradient search on the score function. This is done in order to deal with the fact that the probability distribution of the residual signal still is not gaussian. This fact is taken into account when the coefficients are computed by a ML estimate. The algorithm based on the minimization of a high-order statistics criterion, uses on-line estimation of the residue statistics and is based on blind deconvolution of Wiener systems [1]. Improvements in the experimental results with speech signals emphasize on the interest of this approach.
Resumo:
Diagnosis of community acquired legionella pneumonia (CALP) is currently performed by means of laboratory techniques which may delay diagnosis several hours. To determine whether ANN can categorize CALP and non-legionella community-acquired pneumonia (NLCAP) and be standard for use by clinicians, we prospectively studied 203 patients with community-acquired pneumonia (CAP) diagnosed by laboratory tests. Twenty one clinical and analytical variables were recorded to train a neural net with two classes (LCAP or NLCAP class). In this paper we deal with the problem of diagnosis, feature selection, and ranking of the features as a function of their classification importance, and the design of a classifier the criteria of maximizing the ROC (Receiving operating characteristics) area, which gives a good trade-off between true positives and false negatives. In order to guarantee the validity of the statistics; the train-validation-test databases were rotated by the jackknife technique, and a multistarting procedure was done in order to make the system insensitive to local maxima.
Resumo:
Substantial collective flow is observed in collisions between lead nuclei at Large Hadron Collider (LHC) as evidenced by the azimuthal correlations in the transverse momentum distributions of the produced particles. Our calculations indicate that the global v1-flow, which at RHIC peaked at negative rapidities (named third flow component or antiflow), now at LHC is going to turn toward forward rapidities (to the same side and direction as the projectile residue). Potentially this can provide a sensitive barometer to estimate the pressure and transport properties of the quark-gluon plasma. Our calculations also take into account the initial state center-of-mass rapidity fluctuations, and demonstrate that these are crucial for v1 simulations. In order to better study the transverse momentum flow dependence we suggest a new"symmetrized" vS1(pt) function, and we also propose a new method to disentangle global v1 flow from the contribution generated by the random fluctuations in the initial state. This will enhance the possibilities of studying the collective Global v1 flow both at the STAR Beam Energy Scan program and at LHC.
Resumo:
Les pneumonies causent une mortalité et une morbidité significatives. De manière simplifiée, deux types de pneumonie sont décrits : la pneumonie communautaire et la pneumonie nosocomiale avec le pneumocoque et l'Haemophilus influenzae comme causes principales pour la première, le Pseudomonas et diverses entérobactéries pour la deuxième. La réalité est cependant plus complexe puisque l'on distingue aussi la pneumonie d'aspiration par exemple. La culture est très importante dans le cas des pneumonies nosocomiales car elle permet de déterminer la sensibilité aux antibiotiques de l'agent infectieux et d'adapter le traitement. Pour les patients immunosupprimés, le diagnostic différentiel est plus large et la recherche par tests moléculaires de certains virus, de champignons filamenteux et du Pneumocystis peut se révéler informative. Pneumonia is an importance cause of mortality and morbidity in adults. Two types of pneumonia are defined: community-acquired and nosocomial pneumonia with their corresponding etiology such as pneumococci or Haemophilus influenzae and Pseudomonas or enterobacteriaceae, respectively. However, the reality is more complex with aspiration pneumonia, pneumonia in immunocompromised patient, and pneumonia in ventilated patients. Culture in the case of nosocomial pneumonia is especially important to obtain the antibiotic susceptibility of the infectious agent and to adjust therapy. Moreover for immunocompromised patients, the differential diagnosis is much wider looking for viruses, filamentous fungi and Pneumocystis can be very informative, using new molecular assays.
Resumo:
A proposta do trabalho é apresentar os achados radiológicos observados na tomografia computadorizada de alta resolução do tórax de dois pacientes com pneumonia intersticial linfocítica e correlacioná-los com os aspectos anatomopatológicos, obtidos a partir de biópsias a céu aberto. Um dos pacientes mostrou, na tomografia, basicamente opacidades em vidro fosco difusas, e o outro tinha infiltração ao longo das bainhas conjuntivas peribroncovasculares. Na anatomopatologia o padrão predominante foi o de infiltração intersticial, especialmente ao longo dos septos alveolares, por linfócitos policlonais. O estudo mostrou estreita correlação entre os achados anatomopatológicos e aqueles observados na tomografia computadorizada de alta resolução do tórax.
Resumo:
BACKGROUND: Endovascular treatment for acute ischemic stroke patients was recently shown to improve recanalization rates and clinical outcome in a well-defined study population. Intravenous thrombolysis (IVT) alone is insufficiently effective to recanalize in certain patients or of little value in others. Accordingly, we aimed at identifying predictors of recanalization in patients treated with or without IVT. METHODS: In the observational Acute Stroke Registry and Analysis of Lausanne (ASTRAL) registry, we selected those stroke patients (1) with an arterial occlusion on computed tomography angiography (CTA) imaging, (2) who had an arterial patency assessment at 24 hours (CTA/magnetic resonance angiography/transcranial Doppler), and (3) who were treated with IVT or had no revascularization treatment. Based on 2 separate logistic regression analyses, predictors of spontaneous and post-thrombolytic recanalization were generated. RESULTS: Partial or complete recanalization was achieved in 121 of 210 (58%) thrombolyzed patients. Recanalization was associated with atrial fibrillation (odds ratio , 1.6; 95% confidence interval, 1.2-3.0) and absence of early ischemic changes on CT (1.1, 1.1-1.2) and inversely correlated with the presence of a significant extracranial (EC) stenosis or occlusion (.6, .3-.9). In nonthrombolyzed patients, partial or complete recanalization was significantly less frequent (37%, P < .01). The recanalization was independently associated with a history of hypercholesterolemia (2.6, 1.2-5.6) and the proximal site of the intracranial occlusion (2.5, 1.2-5.4), and inversely correlated with a decreased level of consciousness (.3, .1-.8), and EC (.3, .1-.6) and basilar artery pathology (.1, .0-.6). CONCLUSIONS: Various clinical findings, cardiovascular risk factors, and arterial pathology on acute CTA-based imaging are moderately associated with spontaneous and post-thrombolytic arterial recanalization at 24 hours. If confirmed in other studies, this information may influence patient selection toward the most appropriate revascularization strategy.
Resumo:
PURPOSE: The purpose of our study was to assess whether a model combining clinical factors, MR imaging features, and genomics would better predict overall survival of patients with glioblastoma (GBM) than either individual data type. METHODS: The study was conducted leveraging The Cancer Genome Atlas (TCGA) effort supported by the National Institutes of Health. Six neuroradiologists reviewed MRI images from The Cancer Imaging Archive (http://cancerimagingarchive.net) of 102 GBM patients using the VASARI scoring system. The patients' clinical and genetic data were obtained from the TCGA website (http://www.cancergenome.nih.gov/). Patient outcome was measured in terms of overall survival time. The association between different categories of biomarkers and survival was evaluated using Cox analysis. RESULTS: The features that were significantly associated with survival were: (1) clinical factors: chemotherapy; (2) imaging: proportion of tumor contrast enhancement on MRI; and (3) genomics: HRAS copy number variation. The combination of these three biomarkers resulted in an incremental increase in the strength of prediction of survival, with the model that included clinical, imaging, and genetic variables having the highest predictive accuracy (area under the curve 0.679±0.068, Akaike's information criterion 566.7, P<0.001). CONCLUSION: A combination of clinical factors, imaging features, and HRAS copy number variation best predicts survival of patients with GBM.
Resumo:
We tested and compared performances of Roach formula, Partin tables and of three Machine Learning (ML) based algorithms based on decision trees in identifying N+ prostate cancer (PC). 1,555 cN0 and 50 cN+ PC were analyzed. Results were also verified on an independent population of 204 operated cN0 patients, with a known pN status (187 pN0, 17 pN1 patients). ML performed better, also when tested on the surgical population, with accuracy, specificity, and sensitivity ranging between 48-86%, 35-91%, and 17-79%, respectively. ML potentially allows better prediction of the nodal status of PC, potentially allowing a better tailoring of pelvic irradiation.
Resumo:
BACKGROUND: Diagnosing pediatric pneumonia is challenging in low-resource settings. The World Health Organization (WHO) has defined primary end-point radiological pneumonia for use in epidemiological and vaccine studies. However, radiography requires expertise and is often inaccessible. We hypothesized that plasma biomarkers of inflammation and endothelial activation may be useful surrogates for end-point pneumonia, and may provide insight into its biological significance. METHODS: We studied children with WHO-defined clinical pneumonia (n = 155) within a prospective cohort of 1,005 consecutive febrile children presenting to Tanzanian outpatient clinics. Based on x-ray findings, participants were categorized as primary end-point pneumonia (n = 30), other infiltrates (n = 31), or normal chest x-ray (n = 94). Plasma levels of 7 host response biomarkers at presentation were measured by ELISA. Associations between biomarker levels and radiological findings were assessed by Kruskal-Wallis test and multivariable logistic regression. Biomarker ability to predict radiological findings was evaluated using receiver operating characteristic curve analysis and Classification and Regression Tree analysis. RESULTS: Compared to children with normal x-ray, children with end-point pneumonia had significantly higher C-reactive protein, procalcitonin and Chitinase 3-like-1, while those with other infiltrates had elevated procalcitonin and von Willebrand Factor and decreased soluble Tie-2 and endoglin. Clinical variables were not predictive of radiological findings. Classification and Regression Tree analysis generated multi-marker models with improved performance over single markers for discriminating between groups. A model based on C-reactive protein and Chitinase 3-like-1 discriminated between end-point pneumonia and non-end-point pneumonia with 93.3% sensitivity (95% confidence interval 76.5-98.8), 80.8% specificity (72.6-87.1), positive likelihood ratio 4.9 (3.4-7.1), negative likelihood ratio 0.083 (0.022-0.32), and misclassification rate 0.20 (standard error 0.038). CONCLUSIONS: In Tanzanian children with WHO-defined clinical pneumonia, combinations of host biomarkers distinguished between end-point pneumonia, other infiltrates, and normal chest x-ray, whereas clinical variables did not. These findings generate pathophysiological hypotheses and may have potential research and clinical utility.
Resumo:
Os autores relatam um caso de pneumonia lipídica em um paciente de 80 anos de idade, que iniciou o quadro com dispnéia em repouso. Havia história de constipação crônica, com uso freqüente de laxativos oleosos. O paciente apresentava diminuição do nível de consciência e os familiares relatavam tosse e engasgos freqüentes, durante o uso do medicamento. As radiografias de tórax demonstravam consolidação localizada no segmento posterior do lobo superior do pulmão direito, além de opacidades mal definidas nos lobos inferiores e que não se modificavam em exames sucessivos. A tomografia computadorizada de alta resolução mostrou consolidações com medidas de densidade negativas em seu interior, variando de -29 a -83 UH, e opacidades em vidro fosco localizadas no lobo superior do pulmão direito e nos lobos inferiores, com predomínio nos segmentos posteriores. O diagnóstico foi feito através do lavado bronco-alveolar, que evidenciou a presença do material oleoso. O paciente foi orientado a interromper o uso de laxativos oleosos e não retornou para o controle ambulatorial.
Resumo:
OBJECTIVE: To develop predictive models for early triage of burn patients based on hypersusceptibility to repeated infections. BACKGROUND: Infection remains a major cause of mortality and morbidity after severe trauma, demanding new strategies to combat infections. Models for infection prediction are lacking. METHODS: Secondary analysis of 459 burn patients (≥16 years old) with 20% or more total body surface area burns recruited from 6 US burn centers. We compared blood transcriptomes with a 180-hour cutoff on the injury-to-transcriptome interval of 47 patients (≤1 infection episode) to those of 66 hypersusceptible patients [multiple (≥2) infection episodes (MIE)]. We used LASSO regression to select biomarkers and multivariate logistic regression to built models, accuracy of which were assessed by area under receiver operating characteristic curve (AUROC) and cross-validation. RESULTS: Three predictive models were developed using covariates of (1) clinical characteristics; (2) expression profiles of 14 genomic probes; (3) combining (1) and (2). The genomic and clinical models were highly predictive of MIE status [AUROCGenomic = 0.946 (95% CI: 0.906-0.986); AUROCClinical = 0.864 (CI: 0.794-0.933); AUROCGenomic/AUROCClinical P = 0.044]. Combined model has an increased AUROCCombined of 0.967 (CI: 0.940-0.993) compared with the individual models (AUROCCombined/AUROCClinical P = 0.0069). Hypersusceptible patients show early alterations in immune-related signaling pathways, epigenetic modulation, and chromatin remodeling. CONCLUSIONS: Early triage of burn patients more susceptible to infections can be made using clinical characteristics and/or genomic signatures. Genomic signature suggests new insights into the pathophysiology of hypersusceptibility to infection may lead to novel potential therapeutic or prophylactic targets.
Resumo:
Intracranial aneurysms are a common pathologic condition with a potential severe complication: rupture. Effective treatment options exist, neurosurgical clipping and endovascular techniques, but guidelines for treatment are unclear and focus mainly on patient age, aneurysm size, and localization. New criteria to define the risk of rupture are needed to refine these guidelines. One potential candidate is aneurysm wall motion, known to be associated with rupture but difficult to detect and quantify. We review what is known about the association between aneurysm wall motion and rupture, which structural changes may explain wall motion patterns, and available imaging techniques able to analyze wall motion.