974 resultados para Plant genetic transformation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this article is to show how quantitative genetics has contributed to the huge genetic progress obtained in plant breeding in Brazil in the last forty years. The information obtained through quantitative genetics has given Brazilian breeders the possibility of responding to innumerable questions in their work in a much more informative way, such as the use or not of hybrid cultivars, which segregating population to use, which breeding method to employ, alternatives for improving the efficiency of selection programs, and how to handle the data of progeny and/or cultivars evaluations to identify the most stable ones and thus improve recommendations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sugarcane is a culture of great importance for the Brazilian agriculture. Every year this culture consumes great amounts of nitrogen and phosphate fertilizers. However, the use of plant growth-promoting bacteria can reduce the use of the chemical fertilizers, contributing to the economy and the environment conservation. So, the goal of this study was to select sugarcane-associated diazotrophic bacteria able to solubilize inorganic phosphate and to evaluate the genetic diversity of these bacteria. A total of 68 diazotrophic bacteria, leaf and root endophytic and rizoplane, of three sugarcane varieties. The selection of inorganic phosphate solubilizing diazotrophic bacteria was assayed by the solubilization index (SI) in solid medium containing insoluble phosphate. The genetic variability was analyzed by the BOX-PCR technique. The results showed that 74% of the diazotrophic strains were able to solubilize inorganic phosphate, presenting classes of different SI. The results showed that the vegetal tissue and the genotype plant influenced in the interaction between phosphate solubilizing diazotrophic bacteria and sugarcane plants. BOX-PCR revealed high genetic variability among the strains analyzed. So, sugarcane-associated diazotrophic bacteria express the capacity to solubilize inorganic phosphate and they present high genetic diversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brazil is one of the main centers of origin of pineapple species presenting the largest genetic variation of the Ananas genus. Embrapa Cassava and Fruits is a Brazilian Agricultural Research Corporation and has an ex-situ collection of 678 accessions of the Ananas genus and some other Bromeliaceae. The use of ornamental pineapple has increased in the last years demanding new varieties, mainly for the external market, due to the originality and colors of its tiny fruits. The main aim of the present study was describing accessions from the pineapple gene bank in order to quantify their genetic variation and identify possible progenitors to be used in breeding programs of ornamental pineapples. Eighty-nine accessions of Ananas comosus var. comosus, A. comosus var. bracteatus (Lindl.) Coppens et Leal, A. comosus var. ananassoides (Baker) Coppens et Leal, A. comosus var. erectifolius (L. B. Smith) Coppens et Leal, A. comosus var. parguasensis (Camargo et L. B. Smith) Coppens et Leal and A. macrodontes Morren were evaluated with 25 morphological descriptors. According to the results, the evaluated accessions were separated into the following categories: landscape plants, cut flower, potted plants, minifruits, foliage and hedge. The genetic distance among accessions was determined using the combined qualitative and quantitative data by the Gower algorithm. The pre-selected accessions presented genetic variation and ornamental potential for different uses. The multicategory analysis formed seven clusters through a classification method based on the average Euclidean distance between all accessions using the cut-point of genetic dissimilarity (D dg = 0.35). The genotypes A. comosus var. erectifolius were selected to be used as landscape plants, cut flower, minifruits and potted plants. Accessions of A. comosus var. bracteatus and A. macrodontes were selected as landscape plants and hedge. The highest variation was observed in A. comosus var. ananassoides genotypes, which presented high potential for use as cut flowers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Premise of the study: Vellozia hirsuta forms a complex presenting wide morphological and anatomical variation, resulting in five specific names and 14 morpho-anatomical patterns occurring in disjunct populations. We carried out a phylogeographical study to investigate the existence of correlation among the genetic and morphological patterns within this complex, and to determine whether it is composed of various species or should be treated as an ochlospecies, a species having widely polymorphic and weakly polytypic complex variation, with morphological characteristics varying independently. Methods: We carried out phylogeographical analyses using cpDNA rpl32F-trnL intergenic region. Key results: We found 20 haplotypes in 23 populations sampled. The populations are genetically structured (Phi(ST) = 0.818) into four phylogeographical groups demonstrating geographical structuring but with no correlation with morpho-anatomical patterns. Our analyses do not support recognizing any of the species now synonymized under Vellozia hirsuta. The northern populations were the most genetically differentiated and could be considered a distinct taxon, as they are also morphologically different. Conclusions: It is recommended that Vellozia hirsuta be considered a single enormously variable species. The patterns of variation within V. hirsuta probably are related to climatic changes that occurred during the Pleistocene Epoch in tropical Brazil when reductions in forest cover favored the expansion of V. hirsuta populations into extensive lowland areas. The expansion of forest cover at the end of the glaciations would have again restricted the occurrence of campos rupestres vegetation to high elevations, which constitute the current centers of diversity of this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oil content and grain yield in maize are negatively correlated, and so far the development of high-oil high-yielding hybrids has not been accomplished. Then a fully understand of the inheritance of the kernel oil content is necessary to implement a breeding program to improve both traits simultaneously. Conventional and molecular marker analyses of the design III were carried out from a reference population developed from two tropical inbred lines divergent for kernel oil content. The results showed that additive variance was quite larger than the dominance variance, and the heritability coefficient was very high. Sixteen QTL were mapped, they were not evenly distributed along the chromosomes, and accounted for 30.91% of the genetic variance. The average level of dominance computed from both conventional and QTL analysis was partial dominance. The overall results indicated that the additive effects were more important than the dominance effects, the latter were not unidirectional and then heterosis could not be exploited in crosses. Most of the favorable alleles of the QTL were in the high-oil parental inbred, which could be transferred to other inbreds via marker-assisted backcross selection. Our results coupled with reported information indicated that the development of high-oil hybrids with acceptable yields could be accomplished by using marker-assisted selection involving oil content, grain yield and its components. Finally, to exploit the xenia effect to increase even more the oil content, these hybrids should be used in the Top Cross((TM)) procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Musa germplasm collection at Embrapa Cassava and Fruits detains accessions from different sections of the Musa genus. The objective of the present study was to identify and morphologically characterize banana accessions from the banana germplasm with ornamental potential, as well as to quantify their genetic variability; and identify possible progenitors to be used in breeding aiming to achieve ornamental crossbreeds. The accessions were evaluated with the use of 32 morphological descriptors. Then, they were the following grouped into categories: landscape plants, cut flower, potted plants, and male inflorescence minifruits. The pre-selected accessions presented great genetic variability and ornamental potential for different uses. The accessions of the Rhodochlamys and Callimusa sections were selected to be used as landscape plants, cut flowers, potted plants, male inflorescence and minifruits. Most of the diploids from the Eumusa section evaluated in this study are indicated for the production of ornamental minifruits, except for 'Lidi' and Cici, which can also be indicated as landscape plants. The BB diploids have great potential for the use of the male inflorescence in floral arrangements, and did not offer any other indication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bark extracts of Stryphnodendron adstringens (Mart) Coville a Leguminosae species, well known in Brazil as barbatimao, are popularly used as healing agent. The objective of this work was to determine the genetic diversity of S. adstringens populations and to correlate genetic distances to the production of tannins. S. adstringens accessions from populations found in Cerrado regions in the states of Goias, Minas Gerais and Sao Paulo were analyzed using the AFLP (Amplified Fragment Length Polymorphism) technique. A total of 236 polymorphic bands were scored and higher proportion of genetic diversity was found inter populations (70.9%), rather than intra populations (29.1%). F-ST value was found to be significantly greater than zero (0.2906), demonstrating the complex genetic structure of S. adstringens populations. Accessions collected in Cristalina, GO, showed higher percentage of polymorphic loci (87.3%) and the highest genetic diversity. The lowest genetic variability was detected among accessions from the population growing in Caldas Novas, GO. The genetic distance among populations was estimated using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA), which grouped populations into 3 clusters. Moreover, chemotypes with tannin concentration above 40% showed higher genetic similarity. AFLP analysis proved to be an efficient gene mapping technique to determine the genetic diversity among remaining populations of S. adstringens. Obtained results may be employed to implement further strategies for the conservation of this medicinal plant. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the genetic structure of wild plant populations is essential for their management and conservation. Several DNA markers have been used in such studies, as well as isozyme markers. In order to provide a better comprehension of the results obtained and a comparison between markers which will help choose tools for future studies in natural populations of Oryza glumaepatula, a predominantly autogamous species, this study used both isozymes and microsatellites to assess the genetic diversity and genetic structure of 13 populations, pointing to similarities and divergences of each marker, and evaluating the relative importance of the results for studies of population genetics and conservation. A bulk sample for each population was obtained, by sampling two to three seeds of each plant, up to a set of 50 seeds. Amplified products of eight SSR loci were electrophoresed on non-denaturing polyacrylamide gels, and the fragments were visualized using silver staining procedure. Isozyme analyses were conducted in polyacrylamide gels, under a discontinuous system, using six enzymatic loci. SSR loci showed higher mean levels of genetic diversity (A=2.83, p=0.71, A(P)=3.17, H-o=0.081, H-e=0.351) than isozyme loci (A=1.20, p=0.20, A(P)=1.38, H-o=0.006, H-e=0.056). Interpopulation genetic differentiation detected by SSR loci (R-ST=0.631, equivalent to F-ST=0.533) was lower than that obtained with isozymes (F-ST=0.772). However, both markers showed high deviation from Hardy-Weinberg expectations (F-IS=0.744 and 0.899, respectively for SSR and isozymes). The mean apparent outcrossing rate for SSR ((t) over bar (a)=0.14) was higher than that obtained using isozymes ((t) over bar (a)=0.043), although both markers detected lower levels of outcrossing in Amazonia compared to the Pantanal. The migrant number estimation was also higher for SSR (Nm=0.219) than isozymes (Nm=0.074), although a small number for both markers was expected due to the mode of reproduction of this species, defined as mixed with predominance of self fertilization. No correlation was obtained between genetic and geographic distances with SSR, but a positive correlation was found between genetic and geographic distances with isozymes. We conclude that these markers are divergent in detecting genetic diversity parameters in O. glumaepatula and that microsatellites are powerful for detecting information at the intra-population level, while isozymes are more powerful for inter-population diversity, since clustering of populations agreed with the expectations based on the geographic distribution of the populations using this marker. Rev. Biol. Trop. 60 (4): 1463-1478. Epub 2012 December 01.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biotransformation of the sesquiterpene lactone tagitinin C by the fungus Aspergillus terreus MT 5.3 yielded a rare derivative that was elucidated by spectrometric methods. The fungus led to the formation of a different product through an unusual epoxidation reaction between C4 and C5, formation of a C3,C10 ether bridge, and a methoxylation of the C1 of tagitinin C. The chemical structure of the product, namely 1 beta-methoxy-3 alpha-hydroxy-3,10 beta-4,5 alpha-diepoxy-8 beta-isobutyroyloxygermacr-11(13)-en-6 alpha,12-olide, is the same as that of a derivative that was recently isolated from the flowers of a Brazilian population of Mexican sunflower (Tithonia diversifolia), which is the source of the substrate tagitinin C. The in vitro cytotoxic activity of the substrate and the biotransformed product were evaluated in HL-60 cells using an MTT assay, and both compounds were found to be cytotoxic. We show that soil fungi may be useful in the biotransformation of sesquiterpene lactones, thereby leading to unusual changes in their chemical structures that may preserve or alter their biological activities, and may also mimic plant biosynthetic pathways for production of secondary metabolites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the premise of symbiotic control, we genetically modified the citrus endophytic bacterium Methylobacterium extorquens, strain AR1.6/2, and evaluated its capacity to colonize a model plant and its interaction with Xylella fastidiosa, the causative agent of Citrus Variegated Chlorosis (CVC). AR1.6/2 was genetically transformed to express heterologous GFP (Green Fluorescent Protein) and an endoglucanase A (EglA), generating the strains ARGFP and AREglA, respectively. By fluorescence microscopy, it was shown that ARGFP was able to colonize xylem vessels of the Catharanthus roseus seedlings. Using scanning electron microscopy, it was observed that AREglA and X. fastidiosa may co-inhabit the C. roseus vessels. M. extorquens was observed in the xylem with the phytopathogen X. fastidiosa, and appeared to cause a decrease in biofilm formation. AREglA stimulated the production of resistance protein, catalase, in the inoculated plants. This paper reports the successful transformation of AR1.6/2 to generate two different strains with a different gene each, and also indicates that AREglA and X. fastidiosa could interact inside the host plant, suggesting a possible strategy for the symbiotic control of CVC disease. Our results provide an enhanced understanding of the M. extorquens-X. fastidiosa interaction, suggesting the application of AR1.6/2 as an agent of symbiotic control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Banana cultivars are mostly derived from hybridization between wild diploid subspecies of Musa acuminata (A genome) and M. balbisiana (B genome), and they exhibit various levels of ploidy and genomic constitution. The Embrapa ex situ Musa collection contains over 220 accessions, of which only a few have been genetically characterized. Knowledge regarding the genetic relationships and diversity between modern cultivars and wild relatives would assist in conservation and breeding strategies. Our objectives were to determine the genomic constitution based on Internal Transcribed Spacer (ITS) regions polymorphism and the ploidy of all accessions by flow cytometry and to investigate the population structure of the collection using Simple Sequence Repeat (SSR) loci as co-dominant markers based on Structure software, not previously performed in Musa. Results From the 221 accessions analyzed by flow cytometry, the correct ploidy was confirmed or established for 212 (95.9%), whereas digestion of the ITS region confirmed the genomic constitution of 209 (94.6%). Neighbor-joining clustering analysis derived from SSR binary data allowed the detection of two major groups, essentially distinguished by the presence or absence of the B genome, while subgroups were formed according to the genomic composition and commercial classification. The co-dominant nature of SSR was explored to analyze the structure of the population based on a Bayesian approach, detecting 21 subpopulations. Most of the subpopulations were in agreement with the clustering analysis. Conclusions The data generated by flow cytometry, ITS and SSR supported the hypothesis about the occurrence of homeologue recombination between A and B genomes, leading to discrepancies in the number of sets or portions from each parental genome. These phenomenons have been largely disregarded in the evolution of banana, as the “single-step domestication” hypothesis had long predominated. These findings will have an impact in future breeding approaches. Structure analysis enabled the efficient detection of ancestry of recently developed tetraploid hybrids by breeding programs, and for some triploids. However, for the main commercial subgroups, Structure appeared to be less efficient to detect the ancestry in diploid groups, possibly due to sampling restrictions. The possibility of inferring the membership among accessions to correct the effects of genetic structure opens possibilities for its use in marker-assisted selection by association mapping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background The database of sugarcane expressed sequence tags (EST) offers a great opportunity for developing molecular markers that are directly associated with important agronomic traits. The development of new EST-SSR markers represents an important tool for genetic analysis. In sugarcane breeding programs, functional markers can be used to accelerate the process and select important agronomic traits, especially in the mapping of quantitative traits loci (QTL) and plant resistant pathogens or qualitative resistance loci (QRL). The aim of this work was to develop new simple sequence repeat (SSR) markers in sugarcane using the sugarcane expressed sequence tag (SUCEST database). Findings A total of 365 EST-SSR molecular markers with trinucleotide motifs were developed and evaluated in a collection of 18 genotypes of sugarcane (15 varieties and 3 species). In total, 287 of the EST-SSRs markers amplified fragments of the expected size and were polymorphic in the analyzed sugarcane varieties. The number of alleles ranged from 2-18, with an average of 6 alleles per locus, while polymorphism information content values ranged from 0.21-0.92, with an average of 0.69. The discrimination power was high for the majority of the EST-SSRs, with an average value of 0.80. Among the markers characterized in this study some have particular interest, those that are related to bacterial defense responses, generation of precursor metabolites and energy and those involved in carbohydrate metabolic process. Conclusions These EST-SSR markers presented in this work can be efficiently used for genetic mapping studies of segregating sugarcane populations. The high Polymorphism Information Content (PIC) and Discriminant Power (DP) presented facilitate the QTL identification and marker-assisted selection due the association with functional regions of the genome became an important tool for the sugarcane breeding program.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Für die Etablierung einer Transformationsmethode züchterisch relevanter Sorten von Osteospermum ecklonis (Kapmargerite) wurde zunächst ein geeignetes Protokoll für die Regeneration adventiver Sprosse aus vegetativem Gewebe entwickelt. Anschließend wurden Transformationen von Markergenen durch Kokultur mit Agrobacterium tumefaciens durchgeführt. Hierzu wurden Konstrukte verwendet, die das Gen für ß-D-Glucuronidase (GUS) enthielten und deren Expression in transgenen Pflanzen histochemisch nachgewiesen werden konnte. Kanamycinresistenz erwies sich als geeigneter Selektionsmarker für die Transformation. Es konnten von verschiedenen O. ecklonis Sorten GUS-transgene, nicht-chimäre Pflanzen regeneriert werden.Zur Erzeugung transgener Pflanzen mit dem Ziel der Resistenz gegen LMV (lettuce mosaic potyvirus, Salat Mosaik Virus) wurden drei Konstrukte verwendet. Das erste enthält die kodierende Sequenz der Virusproteine VPg, Pro und 6K2. Durch PCR-Mutation wurde die Proteinase-Schnittstelle zwischen 6K2 und VPg zerstört, sowie Start- und Stopcodon eingeführt. Die anderen LMV-abgeleiteten Konstrukte enthalten nicht translatierbare Fragmente des coat protein Gens in sense und antisense Orientierung.Außerdem wurde O. ecklonis noch mit dem Gen des mutmaßlichen Transkriptionsfaktor SPL3 aus Arabidopsis thaliana unter der Kontrolle eines konstitutiven Promotors transformiert. SPL3 ist an der Regulierung der Blüteninduktion in A. thaliana beteiligt.Regenerierte O. ecklonis wurden durch PCR mit konstruktspezifischen Primern auf Anwesenheit des Transgens und Kontamination durch A. tumefaciens überprüft.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pollination and seed dispersal are important ecological processes for the regeneration of plant populations and both vectors for gene exchange between plant populations. For my thesis, I studied the pollination ecology of the South African tree Commiphora harveyi (Burseraceae) and compared it with C. guillauminii from Madagascar. Both species have low visitation rates and a low number of pollinating insect species, resulting in a low fruit set. While their pollination ecology is very similar, they differ in their seed dispersal with a low seed dispersal rate in the Malagasy and a high seed dispersal rate in the South African species. This should be reflected in a stronger genetic differentiation among populations in the Malagasy than in the South African species. My results, based on AFLP markers, contradict these expectations, the overall differentiation was lower in the Malagasy (FST = 0.05) than in the South African species (FST = 0.16). However, at a smaller spatial scale (below 3 km), the Malagasy species was genetically more strongly differentiated than the South African species, which was reflected by the high inter-population variance within the sample site (C. guillauminii: 72.2 - 85.5 %; C. harveyi: 8.4 - 14.5 %). This strong differentiation could arise from limited gene flow, which was confirmed by spatial autocorrelation analyses. The shape of the autocorrelogram suggested that gene exchange between individuals occurred only up to 3 km in the Malagasy species, whereas up to 30 km in the South African species. These results on the genetic structure correspond to the expectations based on seed dispersal data. Thus, seed dispersal seems to be a key factor for the genetic structure in plant populations on a local scale.