976 resultados para Pignotti, Lorenzo.
Resumo:
We undertake a thorough analysis of the thermodynamics of the trajectories followed by a quantum harmonic oscillator coupled to $N$ dissipative baths by using a new approach to large-deviation theory inspired by phase-space quantum optics. As an illustrative example, we study the archetypal case of a harmonic oscillator coupled to two thermal baths, allowing for a comparison with the analogous classical result. In the low-temperature limit, we find a significant quantum suppression in the rate of work exchanged between the system and each bath. We further show how the presented method is capable of giving analytical results even for the case of a driven harmonic oscillator. Based on that result, we analyse the laser cooling of the motion of a trapped ion or optomechanical system, illustrating how the emission statistics can be controllably altered by the driving force.
Resumo:
We investigate the link between information and thermodynamics embodied by Landauer’s principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature reservoir. We demonstrate that Landauer’s principle holds, for such a configuration, in a form that involves the flow of heat dissipated into the environment and the rate of change of the entropy of the system. Quite remarkably, such a principle for heat and entropy power can be explicitly linked to the rate of creation of correlations among the elements of the multipartite system and, in turn, the non-Markovian nature of their reduced evolution. Such features are illustrated in two exemplary cases.
Resumo:
We present a general method to undertake a thorough analysis of the thermodynamics of the quantum jump trajectories followed by an arbitrary quantum harmonic network undergoing linear and bilinear dynamics. The approach is based on the phase-space representation of the state of a harmonic network. The large deviation function associated with this system encodes the full counting statistics of exchange and also allows one to deduce for fluctuation theorems obeyed by the dynamics. We illustrate the method showing the validity of a local fluctuation theorem about the exchange of excitations between a restricted part of the environment (i.e., a local bath) and a harmonic network coupled with different schemes.
Resumo:
The development of a virtual testing environment, as a cost-effective industrial design tool in the design and analysis of composite structures, requires the need to create models efficiently, as well as accelerate the analysis by reducing the number of degrees of freedom, while still satisfying the need for accurately tracking the evolution of a debond, delamination or crack front. The eventual aim is to simulate both damage initiation and propagation in components with realistic geometrical features, where crack propagation paths are not trivial. Meshless approaches, and the Element-Free Galerkin (EFG) method, are particularly suitable for problems involving changes in topology and have been successfully applied to simulate damage in homogeneous materials and concrete. In this work, the method is utilized to model initiation and mixed-mode propagation of cracks in composite laminates, and to simulate experimentally-observed crack migration which is difficult to model using standard finite element analysis. N
Resumo:
This paper presents an experimental and numerical study focused on the tensile fibre fracture toughness characterisation of hybrid plain weave composite laminates using non-standardized Overheight Compact Tension (OCT) specimens. The position as well as the strain field ahead of the crack tip in the specimens was determined using a digital speckle photogrammetry system. The limitation on the applicability of standard data reduction schemes for the determination of the intralaminar fibre fracture toughness of composites is presented and discussed. A methodology based on the numerical evaluation of the strain energy release rate using the J-integral method is proposed to derive new geometric correction functions for the determination of stress intensity factor for alternative composite specimen geometries. A comparison between different methods currently available to compute the intralaminar fracture toughness in composites is also presented and discussed. Good agreement between numerical and experimental results using the proposed methodology was obtained.
Resumo:
Using the contingent valuation method, this study investigates the preferences of local people for a wind farm that is planned in the Province of Rome. We estimate the reductions in their bimonthly electrical bills over a period of time that respondents are willing to accept as compensation for the installation of the wind farm. Our results suggest that respondents who perceive that the wind farm generates substantial negative impacts on landscape beauty ask higher reductions than others, while respondents who believe that the wind farm produces economic benefits for local communities ask lower reductions than others. Finally, we find that the demand for compensative measures is influenced particularly by socio-economic factors such as age and education.
Resumo:
This paper proposes a series of variations in designing the location of a wind farm on Monti della Tolfa. These project solutions aim at mitigating the visual impact caused by the wind aerogenerators. Besides the usual location of the wind aerogenerators on the skyline, these alternatives within the project design relate to the placement of wind turbines in the middle and at the bottom of the hillside. Other possible mitigation forms relate to the dimensions and the colour of the wind towers. This study proposes both a non-monetary and monetary analysis of the visual impact related to each project proposal. The final aim of the paper is to analyze economic and financial costs-benefits for each alternative to find out the economic optimal solution.
Survival of patients with skin melanoma in Europe increases further: Results of the EUROCARE-5 study
Resumo:
Background In Europe skin melanoma (SM) survival has increased over time. The aims were to evaluate recent trends and differences between countries and regions of Europe.
Methods Relative survival (RS) estimates and geographical comparisons were based on 241,485 patients aged 15 years and over with a diagnosis of invasive SM in Europe (2000-2007). Survival time trends during 1999-2007 were estimated using the period approach, for 213,101 patients. Age, gender, sub-sites and morphology subgroups were considered.
Results In European patients, estimated 5-year RS was 83% (95% confidence interval, CI 83-84%). The highest values were found for patients resident in Northern (88%; 87-88%) and Central (88%; 87-88%) Europe, followed by Ireland and United Kingdom (UK) (86%; 85-86%) and Southern Europe (83%; 82-83%). The lowest survival was in Eastern Europe (74%; 74-75%). Within regions the intercountry absolute difference in percentage points of RS varied from 4% (North) to 34% (East). RS decreased markedly with patients' age and was higher in women than men. Differences according to SM morphology and skin sub-sites also emerged. Survival has slightly increased from 1999 to 2007, with a small improvement in Northern and the most pronounced improvement in Eastern Europe.
Discussion SM survival is high and still increasing in European patients. The gap between Northern and Southern and especially Eastern European countries, although still present, diminished over time. Differences in stage distribution at diagnosis may explain most of the geographical differences. However, part of the improvement in survival may be attributed to overdiagnosis from early diagnosis practices.
Resumo:
The interaction of high‐intensity laser pulses with matter releases instantaneously ultra‐large currents of highly energetic electrons, leading to the generation of highly‐transient, large‐amplitude electric and magnetic fields. We report results of recent experiment in which such charge dynamics have been studied by using proton probing techniques able to provide maps of the electrostatic fields with high spatial and temporal resolution. The dynamics of ponderomotive channelling in underdense plasmas have been studied in this way, as also the processes of Debye sheath formation and MeV ion front expansion at the rear of laser‐irradiated thin metallic foils. An application employing laser‐driven impulsive fields for energy‐selective ion beam focusing is also presented.
Resumo:
We report the first complete structural characterization of the lipopolysaccharide (LPS) from a cystic fibrosis (CF) clinical isolate of Prevotella denticola (B003V1S1X). Chemical, spectroscopic, and spectrometric analyses revealed a unique rough-type LPS (LOS) structure. The structure has a highly negatively charged heptasaccharide core region containing hexoses, with the first two sugars, 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and mannose, highly phosphorylated. Furthermore, the lipid A moiety has the typical structure for the genus Prevotella, and was also highly phosphorylated.
Resumo:
Ancient columns, made with a variety of materials such as marble, granite, stone or masonry are an important part of the
European cultural heritage. In particular columns of ancient temples in Greece and Sicily which support only the architrave are
characterized by small axial load values. This feature together with the slenderness typical of these structural members clearly
highlights as the evaluation of the rocking behaviour is a key aspect of their safety assessment and maintenance. It has to be noted
that the rocking response of rectangular cross-sectional columns modelled as monolithic rigid elements, has been widely investigated
since the first theoretical study carried out by Housner (1963). However, the assumption of monolithic member, although being
widely used and accepted for practical engineering applications, is not valid for more complex systems such as multi-block columns
made of stacked stone blocks, with or without mortar beds. In these cases, in fact, a correct analysis of the system should consider
rocking and sliding phenomena between the individual blocks of the structure. Due to the high non-linearity of the problem, the
evaluation of the dynamic behaviour of multi-block columns has been mostly studied in the literature using a numerical approach
such as the Discrete Element Method (DEM). This paper presents an introductory study about a proposed analytical-numerical
approach for analysing the rocking behaviour of multi-block columns subjected to a sine-pulse type ground motion. Based on the
approach proposed by Spanos (2001) for a system made of two rigid blocks, the Eulero-Lagrange method to obtain the motion
equations of the system is discussed and numerical applications are performed with case studies reported in the literature and with a
real acceleration record. The rocking response of single block and multi-block columns is compared and considerations are made
about the overturning conditions and on the effect of forcing function’s frequency.
.
Resumo:
Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems.