968 resultados para Perturbation (Quantum dynamics)
Resumo:
The hydration of mesityl oxide (MOx) was investigated through a sequential quantum mechanics/molecular mechanics approach. Emphasis was placed on the analysis of the role played by water in the MOx syn-anti equilibrium and the electronic absorption spectrum. Results for the structure of the MOx-water solution, free energy of solvation and polarization effects are also reported. Our main conclusion was that in gas-phase and in low-polarity solvents, the MOx exists dominantly in syn-form and in aqueous solution in anti-form. This conclusion was supported by Gibbs free energy calculations in gas phase and in-water by quantum mechanical calculations with polarizable continuum model and thermodynamic perturbation theory in Monte Carlo simulations using a polarized MOx model. The consideration of the in-water polarization of the MOx is very important to correctly describe the solute-solvent electrostatic interaction. Our best estimate for the shift of the pi-pi* transition energy of MOx, when it changes from gas-phase to water solvent, shows a red-shift of -2,520 +/- 90 cm(-1), which is only 110 cm(-1) (0.014 eV) below the experimental extrapolation of -2,410 +/- 90 cm(-1). This red-shift of around -2,500 cm(-1) can be divided in two distinct and opposite contributions. One contribution is related to the syn -> anti conformational change leading to a blue-shift of similar to 1,700 cm(-1). Other contribution is the solvent effect on the electronic structure of the MOx leading to a red-shift of around -4,200 cm(-1). Additionally, this red-shift caused by the solvent effect on the electronic structure can by composed by approximately 60 % due to the electrostatic bulk effect, 10 % due to the explicit inclusion of the hydrogen-bonded water molecules and 30 % due to the explicit inclusion of the nearest water molecules.
Resumo:
We include the dynamics of the angular straggling process in the angular distributions of Mott scattering of heavy ions. We model the passage of an incoming nucleus through a target as a diffusion process. It is then possible to derive a simple and physically transparent expression for the angular dispersion due to the straggling. The angular dispersion should be folded with the theoretical Mott cross section to see its effect on the amplitude of the Mott oscillations. Our results agree very well with data of Pb-208 + Pb-208 scattering. We define the "classical" limit as the limit when the angular dispersion due to straggling becomes comparable with the Mott oscillation period and get the disappearance of quantum interference occurring at the limit 0.050 root xi Z(4)/E-3/2 >= 1, where xi stands for the target thickness, Z is the system's charge, and E is the center-of-mass energy. The experiments on lead are very close to this limit. We show that the kinematical correlations due to the identity of the particles is maintained, as it should be, and the action of the environment is to reduce the fringe visibility.
Resumo:
The elephant walk model originally proposed by Schutz and Trimper to investigate non-Markovian processes led to the investigation of a series of other random-walk models. Of these, the best known is the Alzheimer walk model, because it was the first model shown to have amnestically induced persistence-i.e. superdiffusion caused by loss of memory. Here we study the robustness of the Alzheimer walk by adding a memoryless stochastic perturbation. Surprisingly, the solution of the perturbed model can be formally reduced to the solutions of the unperturbed model. Specifically, we give an exact solution of the perturbed model by finding a surjective mapping to the unperturbed model. Copyright (C) EPLA, 2012
Resumo:
Binary stars are frequent in the universe, with about 50% of the known main sequence stars being located at a multiple star system (Abt, 1979). Even though, they are universally thought as second rate sites for the location of exo-planets and the habitable zone, due to the difficulties of detection and high perturbation that could prevent planet formation and long term stability. In this work we show that planets in binary star systems can have regular orbits and remain on the habitable zone. We introduce a stability criterium based on the solution of the restricted three body problem and apply it to describe the short period planar and three-dimentional stability zones of S-type orbits around each star of the Alpha Centauri system. We develop as well a semi-analytical secular model to study the long term dynamics of fictional planets in the habitable zone of those stars and we verify that planets on the habitable zone would be in regular orbits with any eccentricity and with inclination to the binary orbital plane up until 35 degrees. We show as well that the short period oscillations on the semi-major axis is 100 times greater than the Earth's, but at all the time the planet would still be found inside the Habitable zone.
Resumo:
Excitonic dynamics in a hybrid dot-well system composed of InAs quantum dots (QDs) and an InGaAs quantum well (QW) is studied by means of femtosecond pump-probe reflection and continuous wave (cw) photoluminescence (PL) spectroscopy. The system is engineered to bring the QW ground exciton state into resonance with the third QD excited state. The resonant tunneling rate is varied by changing the effective barrier thickness between the QD and QW layers. This strongly affects the exciton dynamics in these hybrid structures as compared to isolated QW or QD systems. Optically measured decay times of the coupled system demonstrate dramatically different response to temperature change depending on the strength of the resonant tunneling or coupling strength. This reflects a competition between purely quantum mechanical and thermodynamical processes.
Resumo:
Polythermal glaciers, i.e. glaciers with a combination of ice at and below the freezing point, are widespread in arctic and subarctic environments. The polythermal structure has major implications for glacier hydrology, ice flow and glacial erosion. However, the interplay of factors governing its spatial and temporal variations such as net mass balance, ice advection and water content in the ice is poorly investigated and as yet not fully understood. This study deals with a thorough investigation of the polythermal regime on Storglaciären, northern Sweden, a small valley glacier with a cold surface layer in the ablation area. Extensive field work was performed including mapping of the cold surface layer using ground-penetrating radar, ice temperature measurements, mass balance and ice velocity measurements. Analyses of these data combined with numerical modelling were used specifically to investigate the spatial and temporal variability of the cold surface layer, the spatial distribution of the water content just below the cold surface layer transition, the effect of radar frequency on the detection of the surface layer, and the sensitivity of the cold surface layer to changes in forcing. A comparison between direct temperature measurements in boreholes and ground-penetrating surveys shows that the radar-inferred cold-temperate transition depth is within ±1 m from the melting point of ice at frequencies above ~300 MHz. At frequencies below ~155 MHz, the accuracy degrades because of reduced scattering efficiency that occurs when the scatterers become much smaller compared to the wavelength. The mapped spatial pattern of the englacial cold-temperate transition boundary is complex. This pattern reflects the observed spatial variation in net loss of ice at the surface by ablation and vertical advection of ice, which is suggested to provide the predominant forcing of the cold surface layer thickness pattern. This is further supported by thermomechanical modeling of the cold surface layer, which indicates high sensitivity of the cold surface layer thickness to changes in vertical advection rates. The water content is the least investigated quantity that is relevant for the thermal regime of glaciers, but also the most difficult to assess. Spatial variability of absolute water content in the temperate ice immediately below the cold surface layer on Storglaciären was determined by combining relative estimates of water content from ground-penetrating radar data with absolute determination from temperature measurements and the thermal boundary condition at the freezing front. These measurements indicate large-scale spatial variability in the water content, which seems to arise from variations in entrapment of water at the firn-ice transition. However, this variability cannot alone explain the spatial pattern in the thermal regime on Storglaciären. Repeated surveys of the cold surface layer show a 22% average thinning of the cold surface layer on Storglaciären between 1989 and 2001. Transient thermomechanical modeling results suggest that the cold surface layer adapts to new equilibrium conditions in only a few decades after a perturbation in the forcing is introduced. An increased winter air temperature since mid-1980s seems to be the cause of the observed thinning of the cold surface layer. Over the last decades, mass balance measurements indicate that the glacier has been close to a steady state. The quasi-steady state situation is also reflected in the vertical advection, which shows no significant changes during the last decades. Increased winter temperatures at the ice surface would result in a slow-down of the formation of cold ice at the base of the cold surface layer and lead to a larger imbalance between net loss of ice at the surface and freezing of temperate ice at the cold-temperate transition.
Resumo:
Die vorliegende Arbeit beschaeftigt sich mit der Untersuchung vonPolymeren mit intrinsischer Steifigkeit. Es werden vor allem lokale statische unddynamische Eigenschaften anhand zweier verschiedener Simulationsmodellebetrachtet: Ein generisches Polymermodell, bei dem nur dieSteifigkeit als ein das spezifische Polymer charakterisierenden Parametereingeht und ein atomistisches Modell fuer trans-Polyisopren. Mit Hilfe des ersten Modells koennen Statik und Dynamik wurmartiger Kettenbeobachtet werden. Das Blob-Konzept ist eine angemessene statischeBeschreibung. Lokale Orientierungen haengen schwach von derSteifigkeit ab. Das Reptationsmodell kann die beobachtete Dynamik fuer lange Kettennicht mehr angemessen beschreiben. Lange Ketten bewegen sich, als obsie in Roehren gezwaengt waeren; jedoch ist die Bewegung starkabhaengig von der Steifigkeit. Fuer Ketten dieser Art konntequalitativ das Verhalten reproduziert werden, das in NMR-Experimentenbeobachtet wird. Eine Verhakungslaenge laesst sich fuer solche Kettenkaum mehr definieren. Dynamische Strukturfunktionen und insbesonderedie direkte Visualisierung der Ketten verdeutlichen die effektiv aufeine Roehre beschraenkte Bewegung. Das atomistische Polyisoprenmodell wurde mit verschiedenen Experimenten,verglichen. In den Simulationen bei konnten qualitativ undsemiquantitativ experimentelle Ergebnisse reproduziert werden. Zuletzt wurden die Laengen- und Zeitskalen der beiden Modelleerfolgreich aufeinander abgebildet.
Resumo:
A path integral simulation algorithm which includes a higher-order Trotter approximation (HOA)is analyzed and compared to an approach which includes the correct quantum mechanical pair interaction (effective Propagator (EPr)). It is found that the HOA algorithmconverges to the quantum limit with increasing Trotter number P as P^{-4}, while the EPr algorithm converges as P^{-2}.The convergence rate of the HOA algorithm is analyzed for various physical systemssuch as a harmonic chain,a particle in a double-well potential, gaseous argon, gaseous helium and crystalline argon. A new expression for the estimator for the pair correlation function in the HOA algorithm is derived. A new path integral algorithm, the hybrid algorithm, is developed.It combines an exact treatment of the quadratic part of the Hamiltonian and thehigher-order Trotter expansion techniques.For the discrete quantum sine-Gordon chain (DQSGC), it is shown that this algorithm works more efficiently than all other improved path integral algorithms discussed in this work. The new simulation techniques developed in this work allow the analysis of theDQSGC and disordered model systems in the highly quantum mechanical regime using path integral molecular dynamics (PIMD)and adiabatic centroid path integral molecular dynamics (ACPIMD).The ground state phonon dispersion relation is calculated for the DQSGC by the ACPIMD method.It is found that the excitation gap at zero wave vector is reduced by quantum fluctuations. Two different phases exist: One phase with a finite excitation gap at zero wave vector, and a gapless phase where the excitation gap vanishes.The reaction of the DQSGC to an external driving force is analyzed at T=0.In the gapless phase the system creeps if a small force is applied, and in the phase with a gap the system is pinned. At a critical force, the systems undergo a depinning transition in both phases and flow is induced. The analysis of the DQSGC is extended to models with disordered substrate potentials. Three different cases are analyzed: Disordered substrate potentials with roughness exponent H=0, H=1/2,and a model with disordered bond length. For all models, the ground state phonon dispersion relation is calculated.
Resumo:
The topic of this thesis is the investigation of structure,order and dynamics in discotic mesogens by advancedsolid-state NMR spectroscopy. Most of the discotic mesogensunder investigation are hexa-peri-hexabenzocoronene (HBC)derivatives which are of particular interest for potentialdevice applications due to their high one-dimensional chargecarrier mobilities. The supramolecular stacking arrangement of the discoticcores was investigated by 2D 1H-1H double-quantum (DQ)methods, which were modified by incorporating the WATERGATEsuppression technique into the experiments in order toovercome severe phase problems arising from the strongsignal of the long alkyl sidechains. Molecular dynamics and sample orientation was probed throughthe generation of sideband patterns by reconversion rotorencoding in 2D recoupling experiments. These experimentswere extended by new recoupling schemes to enable thedistinction of motion and orientation effects. The solid-state NMR studies presented in this work aim tothe understanding of structure-property relationships in theinvestigated discotic materials, while the experimentsapplied to these materials include new recoupling schemeswhich make the desired information on molecular orientationand dynamics accessible without isotope labelling.
Resumo:
In this thesis we will investigate some properties of one-dimensional quantum systems. From a theoretical point of view quantum models in one dimension are particularly interesting because they are strongly interacting, since particles cannot avoid each other in their motion, and you we can never ignore collisions. Yet, integrable models often generate new and non-trivial solutions, which could not be found perturbatively. In this dissertation we shall focus on two important aspects of integrable one- dimensional models: Their entanglement properties at equilibrium and their dynamical correlators after a quantum quench. The first part of the thesis will be therefore devoted to the study of the entanglement entropy in one- dimensional integrable systems, with a special focus on the XYZ spin-1/2 chain, which, in addition to being integrable, is also an interacting model. We will derive its Renyi entropies in the thermodynamic limit and its behaviour in different phases and for different values of the mass-gap will be analysed. In the second part of the thesis we will instead study the dynamics of correlators after a quantum quench , which represent a powerful tool to measure how perturbations and signals propagate through a quantum chain. The emphasis will be on the Transverse Field Ising Chain and the O(3) non-linear sigma model, which will be both studied by means of a semi-classical approach. Moreover in the last chapter we will demonstrate a general result about the dynamics of correlation functions of local observables after a quantum quench in integrable systems. In particular we will show that if there are not long-range interactions in the final Hamiltonian, then the dynamics of the model (non equal- time correlations) is described by the same statistical ensemble that describes its statical properties (equal-time correlations).
Resumo:
The central aim of this thesis work is the application and further development of a hybrid quantum mechanical/molecular mechanics (QM/MM) based approach to compute spectroscopic properties of molecules in complex chemical environments from electronic structure theory. In the framework of this thesis, an existing density functional theory implementation of the QM/MM approach is first used to calculate the nuclear magnetic resonance (NMR) solvent shifts of an adenine molecule in aqueous solution. The findings show that the aqueous solvation with its strongly fluctuating hydrogen bond network leads to specific changes in the NMR resonance lines. Besides the absolute values, also the ordering of the NMR lines changes under the influence of the solvating water molecules. Without the QM/MM scheme, a quantum chemical calculation could have led to an incorrect assignment of these lines. The second part of this thesis describes a methodological improvement of the QM/MM method that is designed for cases in which a covalent chemical bond crosses the QM/MM boundary. The development consists in an automatized protocol to optimize a so-called capping potential that saturates the electronic subsystem in the QM region. The optimization scheme is capable of tuning the parameters in such a way that the deviations of the electronic orbitals between the regular and the truncated (and "capped") molecule are minimized. This in turn results in a considerable improvement of the structural and spectroscopic parameters when computed with the new optimized capping potential within the QM/MM technique. This optimization scheme is applied and benchmarked on the example of truncated carbon-carbon bonds in a set of small test molecules. It turns out that the optimized capping potentials yield an excellent agreement of NMR chemical shifts and protonation energies with respect to the corresponding full molecules. These results are very promising, so that the application to larger biological complexes will significantly improve the reliability of the prediction of the related spectroscopic properties.
Resumo:
In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model.rnrnThe usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis.rnrnAnalogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe domain wall formation, antiferromagnetically induced density shifts, and we show the relevant role of spin-imbalance for antiferromagnetic states.rnrnSince the first step for understanding the physics of the examined models was the application of a mean field approximation, we analyze the effect of including the second order terms of the weak coupling perturbation expansion for the repulsive model. We show that our results survive the influence of quantum fluctuations and show that the renormalization factors for order parameters and critical temperatures lead to a weaker influence of the fluctuations on the results in finite sized systems than on the results in the thermodynamical limit. Furthermore, in the context of second order theory we address the question whether results obtained in the dynamical mean field theory (DMFT), which is meanwhile a frequently used method for describing trapped systems, survive the effect of the non-local Feynman diagrams neglected in DMFT.
Resumo:
Die vorliegende Arbeit untersucht den Zusammenhang zwischen Skalen in Systemen weicher Materie, der für Multiskalen-Simulationen eine wichtige Rolle spielt. Zu diesem Zweck wurde eine Methode entwickelt, die die Approximation der Separierbarkeit von Variablen für die Molekulardynamik und ähnliche Anwendungen bewertet. Der zweite und größere Teil dieser Arbeit beschäftigt sich mit der konzeptionellen und technischen Erweiterung des Adaptive Resolution Scheme'' (AdResS), einer Methode zur gleichzeitigen Simulation von Systemen mit mehreren Auflösungsebenen. Diese Methode wurde auf Systeme erweitert, in denen klassische und quantenmechanische Effekte eine Rolle spielen.rnrnDie oben genannte erste Methode benötigt nur die analytische Form der Potentiale, wie sie die meisten Molekulardynamik-Programme zur Verfügung stellen. Die Anwendung der Methode auf ein spezielles Problem gibt bei erfolgreichem Ausgang einen numerischen Hinweis auf die Gültigkeit der Variablenseparation. Bei nicht erfolgreichem Ausgang garantiert sie, dass keine Separation der Variablen möglich ist. Die Methode wird exemplarisch auf ein zweiatomiges Molekül auf einer Oberfläche und für die zweidimensionale Version des Rotational Isomer State (RIS) Modells einer Polymerkette angewandt.rnrnDer zweite Teil der Arbeit behandelt die Entwicklung eines Algorithmus zur adaptiven Simulation von Systemen, in denen Quanteneffekte berücksichtigt werden. Die Quantennatur von Atomen wird dabei in der Pfadintegral-Methode durch einen klassischen Polymerring repräsentiert. Die adaptive Pfadintegral-Methode wird zunächst für einatomige Flüssigkeiten und tetraedrische Moleküle unter normalen thermodynamischen Bedingungen getestet. Schließlich wird die Stabilität der Methode durch ihre Anwendung auf flüssigen para-Wasserstoff bei niedrigen Temperaturen geprüft.
Resumo:
This thesis reports on the creation and analysis of many-body states of interacting fermionic atoms in optical lattices. The realized system can be described by the Fermi-Hubbard hamiltonian, which is an important model for correlated electrons in modern condensed matter physics. In this way, ultra-cold atoms can be utilized as a quantum simulator to study solid state phenomena. The use of a Feshbach resonance in combination with a blue-detuned optical lattice and a red-detuned dipole trap enables an independent control over all relevant parameters in the many-body hamiltonian. By measuring the in-situ density distribution and doublon fraction it has been possible to identify both metallic and insulating phases in the repulsive Hubbard model, including the experimental observation of the fermionic Mott insulator. In the attractive case, the appearance of strong correlations has been detected via an anomalous expansion of the cloud that is caused by the formation of non-condensed pairs. By monitoring the in-situ density distribution of initially localized atoms during the free expansion in a homogeneous optical lattice, a strong influence of interactions on the out-of-equilibrium dynamics within the Hubbard model has been found. The reported experiments pave the way for future studies on magnetic order and fermionic superfluidity in a clean and well-controlled experimental system.
Resumo:
La quantum biology (QB) è un campo di ricerca emergente che cerca di affronta- re fenomeni quantistici non triviali all’interno dei contesti biologici dotandosi di dati sperimentali di esplorazioni teoriche e tecniche numeriche. I sistemi biologici sono per definizione sistemi aperti, caldi,umidi e rumorosi, e queste condizioni sono per loro imprenscindibili; si pensa sia un sistema soggetto ad una veloce decoerenza che sopprime ogni dinamica quantistica controllata. La QB, tramite i principi di noise assisted transport e di antenna fononica sostiene che la presenza di un adeguato livello di rumore ambientale aumenti l’efficienza di un network di trasporto,inoltre se all’interno dello spettro ambientale vi sono specifici modi vibrazionali persistenti si hanno effetti di risonanza che rigenerano la coerenza quantistica. L’interazione ambiente-sistema è di tipo non Markoviano,non perturbativo e di forte non equi- librio, ed il rumore non è trattato come tradizionale rumore bianco. La tecnica numerica che per prima ha predetto la rigenerazione della coerenza all’interno di questi network proteici è stato il TEBD, Time Evolving Block Decimation, uno schema numerico che permette di simulare sistemi 1-D a molti corpi, caratterizzati da interazioni di primi vicini e leggermente entangled. Tramite gli algoritmi numerici di Orthopol l’hamiltoniana spin-bosone viene proiettata su una catena discreta 1-D, tenendo conto degli effetti di interazione ambiente-sistema contenuti nello spettro(il quale determina la dinamica del sistema).Infine si esegue l’evoluzione dello stato.