958 resultados para Peripheral Blood Stem Cell Transplant
Resumo:
Human adult stem cells (hASCs) offer a potentially renewable source of cell types that are easily isolated and rapidly expanded for use in regenerative medicine and cell therapies without the complicating ethical problems that are associated with embryonic stem cells. However, the eventual therapeutic use of hASCs requires that these cells and their derivatives maintain their genomic stability. There is currently a lack of systematic studies that are aimed at characterising aberrant chromosomal changes in cultured ASCs over time. However, the presence of mosaicism and accumulation of karyotypic abnormalities within cultured cell subpopulations have been reported. To investigate cytogenetic integrity of cultured human dental stem cell (hDSC) lines, we analysed four expanded hDSC cultures using classical G banding and fluorescent in situ hybridisation (FISH) with X chromosome specific probe. Our preliminary results revealed that about 70% of the cells exhibited karyotypic abnormalities including polyploidy, aneuploidy and ring chromosomes. The heterogeneous spectrum of abnormalities indicates a high frequency of chromosomal mutations that continuously arise upon extended culture. These findings emphasise the need for the careful analysis of the cytogenetic stability of cultured hDSCs before they can be used in clinical therapies.
Resumo:
Adipose tissue-derived stem cells (ASCs) are an attractive source of stem cells with regenerative properties that are similar to those of bone marrow stem cells. Here, we analyze the role of ASCs in reducing the progression of kidney fibrosis. Progressive renal fibrosis was achieved by unilateral clamping of the renal pedicle in mice for 1 h; after that, the kidney was reperfused immediately. Four hours after the surgery, 2 x 10(5) ASCs were intraperitoneally administered, and mice were followed for 24 h posttreatment and then at some other time interval for the next 6 weeks. Also, animals were treated with 2 x 10(5) ASCs at 6 weeks after reperfusion and sacrificed 4 weeks later to study their effect when interstitial fibrosis is already present. At 24 h after reperfusion, ASC-treated animals showed reduced renal dysfunction and enhanced regenerative tubular processes. Renal mRNA expression of IL-6 and TNF was decreased in ASC-treated animals, whereas IL-4. IL-10, and HO-1 expression increased despite a lack of ASCs in the kidneys as determined by SRY analysis. As expected, untreated kidneys shrank at 6 weeks, whereas the kidneys of ASC-treated animals remained normal in size, showed less collagen deposition, and decreased staining for FSP-1, type I collagen, and Hypoxyprobe. The renal protection seen in ASC-treated animals was followed by reduced serum levels of TNF-alpha, KC, RANTES, and IL-1 alpha. Surprisingly, treatment with ASCs at 6 weeks, when animals already showed installed fibrosis, demonstrated amelioration of functional parameters, with less tissue fibrosis observed and reduced mRNA expression of type I collagen and vimentin. ASC therapy can improve functional parameters and reduce progression of renal fibrosis at early and later times after injury, mostly due to early modulation of the inflammatory response and to less hypoxia, thereby reducing the epithelial-mesenchymal transition.
Resumo:
We thank the Clinical Directors from the Hospital das Clínicas da Faculdade de Medicina da USP for their support: Prof. Jose Otávio Costa Auler Junior, Prof. Tarcísio Eloi Pessoa de Barros Filho and Prof. Eloísa Bonfá
Resumo:
Type 1 diabetes mellitus is a chronic disease that results from the autoimmune response against pancreatic insulin producing beta cells. Apart of several insulin regimens, since the decade of 80s various immunomodulatory regimens were tested aiming at blocking some steps of the autoimmune process against beta cell mass and at promoting beta cell preservation. In the last years, some independent research groups tried to cure type 1 diabetes with an "immunologic reset" provided by autologous hematopoietic stem cell transplantation in newly diagnosed patients, and the majority of patients became free form insulin with increasing levels of C-peptide along the time. In this review, we discuss the biology of hematopoietic stem cells and the possible advantages and disadvantages related to the high dose immunosuppression followed by autologous hematopoietic stem cell transplantation.
Resumo:
To identify a classifier in schizophrenia, blood gene expression profiling was applied to patients with schizophrenia under different treatments and to controls. Expression of six genes discriminated patients with sensitivity of 89.3% and specificity of 90%, supporting the use of peripheral blood as biological material for diagnosis in schizophrenia. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Aberrant expression of stem cell-related genes in tumors may confer more primitive and aggressive traits affecting clinical outcome. Here, we investigated expression and prognostic value of the neural stem cell marker CD133, as well as of the pluripotency genes LIN28 and OCT4 in 37 samples of pediatric medulloblastoma, the most common and challenging type of embryonal tumor. While most medulloblastoma samples expressed CD133 and LIN28, OCT4 expression was found to be more sporadic, with detectable levels occurring in 48% of tumors. Expression levels of OCT4, but not CD133 or LIN28, were significantly correlated with shorter survival (P <= 0.0001). Median survival time of patients with tumors hyperexpressing OCT4 and tumors displaying low/undetectable OCT4 expression were 6 and 153 months, respectively. More importantly, when patients were clinically stratified according to their risk of tumor recurrence, positive OCT4 expression in primary tumor specimens could discriminate patients classified as average risk but which further deceased within 5 years of diagnosis (median survival time of 28 months), a poor clinical outcome typical of high risk patients. Our findings reveal a previously unknown prognostic value for OCT4 expression status in medulloblastoma, which might be used as a further indicator of poor survival and aid postoperative treatment selection, with a particular potential benefit for clinically average risk patients.
Resumo:
Stem cell therapy is one of the most promising treatments for the near future. It is expected that this kind of therapy can ameliorate or even reverse some diseases. With regard to type 1 diabetes, studies analyzing the therapeutic effects of stem cells in humans began in 2003 in the Hospital das Clínicas of the Faculty of Medicine of Ribeirão Preto - SP USP, Brazil, and since then other centers in different countries started to randomize patients in their clinical trials. Herein we summarize recent data about beta cell regeneration, different ways of immune intervention and what is being employed in type 1 diabetic patients with regard to stem cell repertoire to promote regeneration and/or preservation of beta cell mass.
Resumo:
Abstract Background The use of stem cells to treat type 1 diabetes mellitus has been proposed for many years, both to downregulate the immune system and to provide β cell regeneration. Conclusion High dose immunosuppression followed by autologous hematopoietic stem cell transplantation is able to induce complete remission (insulin independence) in most patients with early onset type 1 diabetes mellitus.
Resumo:
This is an integrative literature review with the aim of summarizing the prevention measures and treatment of thrombotic obstruction of long-term semi-implanted central venous catheters, in patients undergoing hematopoietic stem cell transplantation. The sample consisted of seven studies, being two randomized controlled clinical trials, three cohort studies and two case series. Regarding the prevention measures, one single study demonstrated effectiveness, which was a cohort study on the oral use of warfarin. In relation to the treatment measures, three studies evidenced effectiveness, one highlighted the efficacy of streptokinase or urokinase, one demonstrated the benefit of using low-molecular-weight heparin and the other treated the obstruction with heparin or urokinase. Catheter patency research shows a restricted evolution that does not follow the evolution of transplantations, mainly regarding nursing care.
Resumo:
Acute kidney injury (AKI) is classically described as a rapid loss of kidney function. AKI affects more than 15% of all hospital admissions and is associated with elevated mortality rates. Although many advances have occurred, intermittent or continuous renal replacement therapies are still considered the best options for reversing mild and severe AKI syndrome. For this reason, it is essential that innovative and effective therapies, without side effects and complications, be developed to treat AKI and the end-stages of renal disease. Mesenchymal stem cell (MSC) based therapies have numerous advantages in helping to repair inflamed and damaged tissues and are being considered as a new alternative for treating kidney injuries. Numerous experimental models have shown that MSCs can act via differentiation-independent mechanisms to help renal recovery. Essentially, MSCs can secrete a pool of cytokines, growth factors and chemokines, express enzymes, interact via cell-to-cell contacts and release bioagents such as microvesicles to orchestrate renal protection. In this review, we propose seven distinct properties of MSCs which explain how renoprotection may be conferred: 1) anti-inflammatory; 2) pro-angiogenic; 3) stimulation of endogenous progenitor cells; 4) anti-apoptotic; 5) anti-fibrotic; 6) anti-oxidant; and 7) promotion of cellular reprogramming. In this context, these mechanisms, either individually or synergically, could induce renal protection and functional recovery. This review summarises the most important effects and benefits associated with MSC-based therapies in experimental renal disease models and attempts to clarify the mechanisms behind the MSC-related renoprotection. MSCs may prove to be an effective, innovative and affordable treatment for moderate and severe AKI. However, more studies need to be performed to provide a more comprehensive global understanding of MSC-related therapies and to ensure their safety for future clinical applications.
Resumo:
High serum levels of Interleukin-6 (IL-6) correlate with poor outcome in breast cancer patients. However no data are available on the relationship between IL-6 and stem/progenitor cells which may fuel the genesis of breast cancer in vivo. Herein, we address this issue in mammospheres (MS), multi-cellular structures enriched in stem/progenitor cells of the mammary gland, and also in MCF-7 breast cancer cells. We show that MS from node invasive breast carcinoma tissues express IL-6 mRNA at higher levels than MS from matched non-neoplastic mammary glands. We find that IL-6 mRNA is detectable only in basal-like breast carcinoma tissues, an aggressive variant showing stem cell features. Our results reveal that IL-6 triggers a Notch-3-dependent up-regulation of the Notch ligand Jagged-1, whose interaction with Notch-3 promotes the growth of MS and MCF-7 derived spheroids. Moreover, IL-6 induces a Notch-3-dependent up-regulation of the carbonic anhydrase IX gene, which promotes a hypoxia-resistant/invasive phenotype in MCF-7 cells and MS. Finally, an autocrine IL-6 loop relies upon Notch-3 activity to sustain the aggressive features of MCF-7-derived hypoxia-selected cells. In conclusion, our data support the hypothesis that IL-6 induces malignant features in Notch-3 expressing, stem/progenitor cells from human ductal breast carcinoma and normal mammary gland.
Resumo:
Basal-like tumor is an aggressive breast carcinoma subtype that displays an expression signature similar to that of the basal/myoepithelial cells of the breast tissue. Basal-like carcinoma are characterized by over-expression of the Epidermal Growth Factor receptor (EGFR), high frequency of p53 mutations, cytoplasmic/nuclear localization of beta-catenin, overexpression of the Hypoxia inducible factor (HIF)-1alpha target Carbonic Anhydrase isoenzime 9 (CA9) and a gene expression pattern similar to that of normal and cancer stem cells, including the over-expression of the mammary stem cell markers CD44. In this study we investigated the role of p53, EGFR, beta-catenin and HIF-1alpha in the regulation of stem cell features and genes associated with the basal-like gene expression profile. The findings reported in this investigation indicate that p53 inactivation in ductal breast carcinoma cells leads to increased EGFR mRNA and protein levels. In our experimental model, EGFR overexpression induces beta-catenin cytoplasmatic stabilization and transcriptional activity and, by that, leads to increased aggressive features including mammosphere (MS) forming and growth capacity, invasive potential and overexpression of the mammary stem cell gene CD44. Moreover we found that EGFR/beta-catenin axis promotes hypoxia survival in breast carcinoma cells via increased CA9 expression. Indeed beta-catenin positively regulates CA9 expression upon hypoxia exposure. Interestingly we found that beta-catenin inhibits HIF-1alpha transcriptional activity. Looking for the mechanism, we found that CA9 expression is promoted by HIF-1alpha and cytoplasmatic beta-catenin further increased it post-transcriptionally, via direct mRNA binding and stabilization. These data reveal a functional beta-catenin/HIF-1alpha interplay among hallmarks of basal-like tumors and unveil a new functional role for cytoplasmic beta-catenin in the phenotype of such tumors. Therefore it can be proposed that the interplay here described among EGFR/beta-catenin and HIF-1alpha may play a role in breast cancer stem cell survival and function.
Resumo:
This thesis investigates two distinct research topics. The main topic (Part I) is the computational modelling of cardiomyocytes derived from human stem cells, both embryonic (hESC-CM) and induced-pluripotent (hiPSC-CM). The aim of this research line lies in developing models of the electrophysiology of hESC-CM and hiPSC-CM in order to integrate the available experimental data and getting in-silico models to be used for studying/making new hypotheses/planning experiments on aspects not fully understood yet, such as the maturation process, the functionality of the Ca2+ hangling or why the hESC-CM/hiPSC-CM action potentials (APs) show some differences with respect to APs from adult cardiomyocytes. Chapter I.1 introduces the main concepts about hESC-CMs/hiPSC-CMs, the cardiac AP, and computational modelling. Chapter I.2 presents the hESC-CM AP model, able to simulate the maturation process through two developmental stages, Early and Late, based on experimental and literature data. Chapter I.3 describes the hiPSC-CM AP model, able to simulate the ventricular-like and atrial-like phenotypes. This model was used to assess which currents are responsible for the differences between the ventricular-like AP and the adult ventricular AP. The secondary topic (Part II) consists in the study of texture descriptors for biological image processing. Chapter II.1 provides an overview on important texture descriptors such as Local Binary Pattern or Local Phase Quantization. Moreover the non-binary coding and the multi-threshold approach are here introduced. Chapter II.2 shows that the non-binary coding and the multi-threshold approach improve the classification performance of cellular/sub-cellular part images, taken from six datasets. Chapter II.3 describes the case study of the classification of indirect immunofluorescence images of HEp2 cells, used for the antinuclear antibody clinical test. Finally the general conclusions are reported.