880 resultados para Paper bag cooking
Resumo:
Recovery of cellulose fibres from paper mill effluent has been studied using common polysaccharides or biopolymers such as Guar gum, Xanthan gum and Locust bean gum as flocculent. Guar gum is commonly used in sizing paper and routinely used in paper making. The results have been compared with the performance of alum, which is a common coagulant and a key ingredient of the paper industry. Guar gum recovered about 3.86 mg/L of fibre and was most effective among the biopolymers. Settling velocity distribution curves demonstrated that Guar gum was able to settle the fibres faster than the other biopolymers; however, alum displayed the highest particle removal rate than all the biopolymers at any of the settling velocities. Alum, Guar gum, Xanthan gum and Locust bean gum removed 97.46%, 94.68%, 92.39% and 92.46% turbidity of raw effluent at a settling velocity of 0.5 cm/min, respectively. The conditions for obtaining the lowest sludge volume index such as pH, dose and mixing speed were optimised for guar gum which was the most effective among the biopolymers. Response surface methodology was used to design all experiments, and an optimum operational setting was proposed. The test results indicate similar performance of alum and Guar gum in terms of floc settling velocities and sludge volume index. Since Guar gum is a plant derived natural substance, it is environmentally benign and offers a green treatment option to the paper mills for pulp recycling.
Resumo:
There has long been substantial interest in understanding consumer food choices, where a key complexity in this context is the potentially large amount of heterogeneity in tastes across individual consumers, as well as the role of underlying attitudes towards food and cooking. The present paper underlines that both tastes and attitudes are unobserved, and makes the case for a latent variable treatment of these components. Using empirical data collected in Northern Ireland as part of a wider study to elicit intra-household trade-offs between home-cooked meal options, we show how these latent sensitivities and attitudes drive both the choice behaviour as well as the answers to supplementary questions. We find significant heterogeneity across respondents in these underlying factors and show how incorporating them in our models leads to important insights into preferences.
Resumo:
Many pathological conditions exist where tissues exhibit hypoxia or low oxygen tension. Hypoxic hypoxia arises when there is a reduction in the amount of oxygen entering the blood and occurs in healthy people at high altitude. In 1946, research sponsored by the United States Navy led to the collection and subsequent publication of masses of data demonstrating the physiological consequences and adaptations of ascent to high altitude. This article describes how a figure from a 1947 paper from the American Physiological Society Legacy collection (Houston CS, Riley RL. Respiratory and circulatory changes during acclimatization to high altitude. Am J Physiol 149: 565-588) may be used to allow students to review their understanding of some of the generalized effects of hypoxia on the body. In particular, this figure summarizes some of the adaptive responses that take place in the oxygen transport system as a consequence of prolonged hypoxia.
Synthesis of Directional Modulation Arrays for Circular Polarization Transmission (Best Paper Award)
Resumo:
Rice can easily accumulate arsenic (As) into its grain and is known to be the highest As-containing cereal. In addition, the As burden in rice may increase during its processing (such as when cooking using As-polluted water). The health risk posed by the presence of As in cooked rice depends on its release from the matrix along the digestive system (bioaccessibility). Two types of white polished long-grain rice, namely, nonparboiled and parboiled (total As: 202 and 190 mu g As kg(-1), respectively), were cooked in excess of water with different levels of As (0, 10, 47, 222, and 450 mu g As L-1). The bioaccessibility of As from these cooked rice batches was evaluated with an in vitro dynamic digestion process. Rice cooked with water containing 0 and 10 mu g As L-1 showed lower As concentrations than the raw (uncooked) rice. However, cooking water with relatively high As content (>= 47 mu g As L-1) significantly increased the As concentration in the cooked rice up to 8- and 9-fold for the nonparboiled and parboiled rice, respectively. Parboiled rice, which is most widely consumed in South Asia, showed a higher percentage of As bioaccessibility (59% to 99%) than nonparboiled rice (36% to 69%) and most of the As bioaccessible in the cooked rice (80% to 99%) was released easily during the first 2 h of digestion. The estimation of the As intake through cooked rice based on the As bioaccessibility highlights that a few grams of cooked rice (less than 25 g dry weight per day) cooked with highly As contaminated water is equivalent to the amount of As from 2 L water containing the maximum permissible limit (10 mu g As L-1).
Resumo:
Arsenic (As) contamination of rice plants can result in high total As concentrations (t-As) in cooked rice, especially if As-contaminated water is used for cooking. This study examines two variables: (1) the cooking method (water volume and inclusion of a washing step); and (2) the rice type (atab and boiled). Cooking water and raw atab and boiled rice contained 40 g As l-1 and 185 and 315 g As kg-1, respectively. In general, all cooking methods increased t-As from the levels in raw rice; however, raw boiled rice decreased its t-As by 12.7% when cooked by the traditional method, but increased by 15.9% or 23.5% when cooked by the intermediate or contemporary methods, respectively. Based on the best possible scenario (the traditional cooking method leading to the lowest level of contamination, and the atab rice type with the lowest As content), t-As daily intake was estimated to be 328 g, which was twice the tolerable daily intake of 150 g.
Resumo:
The depletion of three banned nitroimidazole drugs (dimetridazole (DMZ), metronidazole (MNZ) and ronidazole (RNZ)) was investigated in black tiger shrimp (Penaeus monodon) following in-water medication. The highest concentrations of residues were measured immediately after the 24 h immersion (day 0). At this time, MNZ and MNZ-OH residues were measured in shrimp tissue samples at concentrations ranging from 361–4189 and 0.28–6.6 μg kg−1, respectively. DMZ and its metabolites HMMNI ranged in concentration between 31509–37780 and 15.0–31.9 μg kg−1, respectively. RNZ and HMMNI concentrations ranged 14530–24206 and 25.0–55 μg kg−1, respectively. MNZ, DMZ and RNZ were the more persistent marker residues and can be detected for at least eight days post-treatment. MNZ-OH was only detectable on day 0 following treatment with MNZ. HMMNI residues were only detectable up to day 1 (0.97–3.2 μg kg−1) or 2 (1.2–4.5 μg kg−1) following DMZ and RNZ treatment, respectively. The parent drugs, MNZ, DMZ and RNZ were still measureable on day 8 at 0.12–1.00, 40.5–55 and 8.8–18.7 μg kg−1, respectively. The study also investigated the stability of nitroimidazole residues under various cooking procedures (frying, grilling, boiling and boiling followed by microwaving). The experiments were carried out in shrimp muscle tissue containing both high and low concentrations of these residues. Different cooking procedures showed the impact on nitroimidazole residue concentration in shrimp tissuetheir concentration depleted significantly, but partially, by boiling and/or microwaving but the compounds were largely resistant to conventional grilling or frying. Cooking cannot therefore be considered as a safeguard against harmful nitroimidazole residues in shrimp.