870 resultados para ORGANOZINC REAGENTS
Resumo:
Objetivou-se com o presente trabalho, estabelecer a relação entre os pigmentos fotossintéticos extraídos em DMSO e as leituras obtidas no clorofilômetro portátil ClorofiLOG® 1030, gerando modelos matemáticos capazes de predizer os teores de clorofila e de carotenóides em folhas de mamoneira. O trabalho foi conduzido na Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Algodão, situada em Campina Grande, Estado da Paraíba, em outubro de 2010. Para a análise indireta, foi utilizado um equipamento portátil, sendo realizada a leitura em discos foliares com diferentes tonalidades de verde, sendo feita, nesses mesmos discos, a determinação da clorofila pelo método clássico. Para a extração da clorofila, utilizaram-se 5 mL de dimetilsulfóxido (DMSO), a qual foi mantida em banho-maria a 70ºC, por 30 minutos, e retirou-se 3 mL da alíquota para leitura em espectrofotômetro nos comprimentos de onda de 470, 646 e 663 nm. Os dados foram submetidos à análise da variância e regressão polinomial. A leitura obtida no clorofilômetro portátil foi a variável dependente, e os pigmentos fotossintéticos determinados pelo método clássico foi a variável independente. Os resultados indicaram que o clorofilômetro portátil ClorofiLOG® 1030, associado a modelos matemáticos, permitiu estimar a concentração dos pigmentos fotossintéticos, exceto a clorofila b, com alta precisão, com economia de tempo e com reagentes normalmente utilizados nos procedimentos convencionais.
Resumo:
A chemical process optimization and control is strongly correlated with the quantity of information can be obtained from the system. In biotechnological processes, where the transforming agent is a cell, many variables can interfere in the process, leading to changes in the microorganism metabolism and affecting the quantity and quality of final product. Therefore, the continuously monitoring of the variables that interfere in the bioprocess, is crucial to be able to act on certain variables of the system, keeping it under desirable operational conditions and control. In general, during a fermentation process, the analysis of important parameters such as substrate, product and cells concentration, is done off-line, requiring sampling, pretreatment and analytical procedures. Therefore, this steps require a significant run time and the use of high purity chemical reagents to be done. In order to implement a real time monitoring system for a benchtop bioreactor, these study was conducted in two steps: (i) The development of a software that presents a communication interface between bioreactor and computer based on data acquisition and process variables data recording, that are pH, temperature, dissolved oxygen, level, foam level, agitation frequency and the input setpoints of the operational parameters of the bioreactor control unit; (ii) The development of an analytical method using near-infrared spectroscopy (NIRS) in order to enable substrate, products and cells concentration monitoring during a fermentation process for ethanol production using the yeast Saccharomyces cerevisiae. Three fermentation runs were conducted (F1, F2 and F3) that were monitored by NIRS and subsequent sampling for analytical characterization. The data obtained were used for calibration and validation, where pre-treatments combined or not with smoothing filters were applied to spectrum data. The most satisfactory results were obtained when the calibration models were constructed from real samples of culture medium removed from the fermentation assays F1, F2 and F3, showing that the analytical method based on NIRS can be used as a fast and effective method to quantify cells, substrate and products concentration what enables the implementation of insitu real time monitoring of fermentation processes
Resumo:
Increasing concern with the environment, in addition to strict laws, has induced the industries to find altenatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo¬Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. it's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter
Resumo:
Increasing concern with the environment, in addition to strict laws, has induced the industries to find alternatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo- Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. It's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter
Resumo:
Natural gas, although basically composed by light hydrocarbons, also presents contaminant gases in its composition, such as CO2 (carbon dioxide) and H2S (hydrogen sulfide). The H2S, which commonly occurs in oil and gas exploration and production activities, causes damages in oil and natural gas pipelines. Consequently, the removal of hydrogen sulfide gas will result in an important reduction in operating costs. Also, it is essential to consider the better quality of the oil to be processed in the refinery, thus resulting in benefits in economic, environmental and social areas. All this facts demonstrate the need for the development and improvement in hydrogen sulfide scavengers. Currently, the oil industry uses several processes for hydrogen sulfide removal from natural gas. However, these processes produce amine derivatives which can cause damage in distillation towers, can cause clogging of pipelines by formation of insoluble precipitates, and also produce residues with great environmental impact. Therefore, it is of great importance the obtaining of a stable system, in inorganic or organic reaction media, able to remove hydrogen sulfide without formation of by-products that can affect the quality and cost of natural gas processing, transport, and distribution steps. Seeking the study, evaluation and modeling of mass transfer and kinetics of hydrogen removal, in this study it was used an absorption column packed with Raschig rings, where the natural gas, with H2S as contaminant, passed through an aqueous solution of inorganic compounds as stagnant liquid, being this contaminant gas absorbed by the liquid phase. This absorption column was coupled with a H2S detection system, with interface with a computer. The data and the model equations were solved by the least squares method, modified by Levemberg-Marquardt. In this study, in addition to the water, it were used the following solutions: sodium hydroxide, potassium permanganate, ferric chloride, copper sulfate, zinc chloride, potassium chromate, and manganese sulfate, all at low concentrations (»10 ppm). These solutions were used looking for the evaluation of the interference between absorption physical and chemical parameters, or even to get a better mass transfer coefficient, as in mixing reactors and absorption columns operating in counterflow. In this context, the evaluation of H2S removal arises as a valuable procedure for the treatment of natural gas and destination of process by-products. The study of the obtained absorption curves makes possible to determine the mass transfer predominant stage in the involved processes, the mass transfer volumetric coefficients, and the equilibrium concentrations. It was also performed a kinetic study. The obtained results showed that the H2S removal kinetics is greater for NaOH. Considering that the study was performed at low concentrations of chemical reagents, it was possible to check the effect of secondary reactions in the other chemicals, especially in the case of KMnO4, which shows that your by-product, MnO2, acts in H2S absorption process. In addition, CuSO4 and FeCl3 also demonstrated to have good efficiency in H2S removal
Resumo:
Propolis obtained from honeybee hives has been widely used in medicine, cosmetics, and industry due to its versatile biological activities (antioxidant, antimicrobial, fungicidal, antiviral, antiulcer, immunostimulating, and cytostatic). These activities are mainly attributed to the presence of flavonoids in propolis, which points out the interest in quantifying these constituents in propolis preparations, as well as validation of analytical methodologies. High-performance liquid chromatography (HPLC) methods have been reported to quantify isolated flavonoids or these compounds in complex biological matrices, such as herbal raw materials and extractive preparations. An efficient, precise, and reliable method was developed for quantification of propolis extractive solution using HPLC with UV detection. The chromatograms were obtained from various gradient elution systems (GES) tested in order to establish the ideal conditions for the analysis of propolis extractive solution, using methanol and water: acetonitrile (97.5 : 2.5, v/v) as mobile phase. Gradient reversed phase chromatography was performed using a stainless steel column (250 x 4.6 mm i.d., 5 mum) filled with Chromsep RP 18 (Varian), column temperature at 30.0 +/- 0.1degreesC and detection at 310 nm. The main validation parameters of the method were also determined. The method showed linearity for chrysin in the range 0.24-2.4 mug mL(-1) with good correlation coefficients (0.9975). Precision and accuracy were determined. The obtained results demonstrate the efficiency of the proposed method. The analytical procedure is reliable and offers advantages in terms of speed and cost of reagents.
Resumo:
Background and Objectives B subgroups are rare and the genetic analysis reported to date has been limited.Materials and Methods Serological and molecular investigations were performed in blood from a B-subgroup donor.Results Red cells did not react with anti-B and anti-AB reagents. However, cells absorbed anti-B. Red cells presented positive reactions with anti-H, and saliva secreted H substance. The molecular study demonstrated a B allele with the substitutions 467C>T, 646T>A, 681G>A, 771C>T, 796C>A, 803G>C, 829G>A and an 0 allele with the sequence of 002.Conclusions It is probable that the presence in exon 7 of some of the 002 substitutions could have weakened the enzymatic activity of the encoded B transferase.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O losartano potássico é um agente anti-hipertensivo não peptídico, que exerce sua ação por bloqueio específico dos receptores da angiotensina II. Este trabalho propôs a validação e aplicação de métodos analíticos orientados ao controle de qualidade de losartano potássico 50 mg na forma farmacêutica cápsula, utilizando a espectrofotometria direta e derivada de primeira ordem na região do UV. Baseado nas características espectrofotométricas de losartano potássico, um sinal a 205 nm do espectro de ordem zero e um sinal a 234 nm do espectro de primeira derivada foram adequados para a quantificação. Os resultados foram usados para comparar essas duas técnicas instrumentais. O coeficiente de correlação entre as respostas e as concentrações de losartano potássico na faixa de 3,0-7,0 mg L-1 e 6,0-14,0 mg L-1 para espectrofotometria direta e derivada de primeira ordem em solução aquosa, respectivamente, foi de (r) of 0,9999 para ambos os casos. Os métodos foram aplicados para quantificação de losartano potássico em cápsulas obtidas de farmácias de manipulação locais e demonstraram ser eficientes, fáceis de aplicar e de baixo custo. Além disso, não necessitam de reagentes poluentes e requerem equipamentos economicamente viáveis.
Resumo:
The binding selectivity of the M(phen)(edda) (M = Cu, Co, Ni, Zn; phen = 1,10-phenanthroline, edda = ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(11) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N4O2 octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The quantitative chemical characterization of the inorganic fraction of scale products is very relevant in studying, monitoring and controlling corrosive processes of oil pipelines. The X-ray fluorescence spectrometry (XRF) is a very versatile analytical technique, which can be used in quantitative analysis in solid samples at low concentrations of the chemical element, in the order of few ppm. A methodology that involves sample preparation diluted in the proportion of 1:7 (one portion of the sample for seven of wax), pressed as pellets was used in the XRF calibration for chemical analysis of scale products from oil pipelines. The calibration involved the preparation of reference samples from mixtures of P.A. reagents, aiming to optimize the time consumed in the steps of sample preparation and analysis of Al, Ba, Ca, Fe, K, Mg, Mn, Na, P, S, Si, Sr and Ti, using the same pressed pellet for trace and major elements analysis
Resumo:
The present study utilized the thermogravimetry (TG) and optical emission spectroscopy with inductively coupled plasma - ICP / OES to determine the calcium content in tablets of carbonate, citrate and calcium lactate used in the treatment of osteoporosis. The samples were characterized by IR, SEM, TG / DTG, DTA, DSC and XRD. The thermal analysis evaluated the thermal stability and physical-chemical events and showed that the excipients influence the decomposition of active ingredients. The results of thermogravimetry indicated that the decomposition temperature of the active CaCO3 (T = 630.2 °C) is lower compared to that obtained in samples of the tablets (633.4 to 655.2 °C) except for sample AM 2 (Ti = 613.8 oC). In 500.0 °C in the samples of citrate and calcium lactate, as well as their respective active principles had already been formed calcium carbonate. The use of N2 atmosphere resulted in shifting the initial and final temperature related to the decomposition of CaCO3. In the DTA and DSC curves were observed endo and exothermic events for the samples of tablets and active ingredients studied. The infrared spectra identified the main functional groups in all samples of active ingredients, excipients and tablets studied, such as symmetric and asymmetric stretches of the groups OH, CH, C = O. Analysis by X-ray diffraction showed that all samples are crystalline and that the final residue showed peaks indicative of the presence of calcium hydroxide by the reaction of calcium oxide with moisture of the air. Although the samples AM 1, AM 2, AM 3 and AM 6 in their formulations have TiO2 and SiO2 peaks were not observed in X-ray diffractograms of these compounds. The results obtained by TGA to determine the calcium content of the drugs studied were satisfactory when compared with those obtained by ICP-OES. In the AM 1 tablet was obtained the content of 35.37% and 32.62% for TG by ICP-OES, at 6 AM a percentage of 17.77% and 16.82% and for AM 7 results obtained were 8.93% for both techniques, showing that the thermogravimetry can be used to determine the percentage of calcium in tablets. The technique offers speed, economy in the use of samples and procedures eliminating the use of acid reagents in the process of the sample and efficiency results.
Resumo:
Many pollutants dumped in waterways, such as dyes and pesticides, have become so ubiquitous that they represent a serious threat to human health. The electrochemical oxidation is presented as an alternative clean, efficient and economic degradation of wastewater containing organic compounds and a number of advantages of this technique is to just not make use of chemical reagents, since only electrical energy is consumed during the removal of pollutants organic. However, despite being a promising alternative, still needs some tweaking in order to obtain better efficiency in the elimination of persistent pollutants. Thus, this study sought a relationship between a recently discovered phenomenon that reflects the participation of dissolved oxygen in solution in the electrochemical oxidation process, as an anomaly, present a kinetic model that shows instantaneous current efficiency (ICE) above 100% limited by theory, manifested for some experiments with phenolic compounds with H2SO4 or HClO4 as supporting electrolyte with electrodes under anodic oxidation on boron doped diamond (BDD). Therefore it was necessary to reproduce the data ICE exposes the fault model, and thus the 2-naphthol was used as phenolic compound to be oxidised at concentrations of 9, 12 and 15 mmol L-1, and H2SO4 and HClO4 to 1 mol L-1 as a supporting electrolyte under a current density of 30 mA cm-2 in an electrochemical reactor for continuous flow disk configuration, and equipped with anodes DDB at room temperature (25 oC). Experiments were performed using N2 like as purge gas for eliminate oxygen dissolved in solution so that its influence in the system was studied. After exposure of the anomaly of the ICE model and investigation of its relationship with dissolved O2, the data could be treated, making it possible for confirmation. But not only that, the data obtained from eletranálise and spectroscopic analysis suggest the involvement of other strongly oxidizing species (O3 (ozone) and O radicals and O2 -), since the dissolved O2 can be consumed during the formation of new strong oxidizing species, not considered until now, something that needs to be investigated by more accurate methods that we may know a little more of this system. Currently the performance of the electrocatalytic process is established by a complex interaction between different parameters that can be optimized, so it is necessary to the implementation of theoretical models, which are the conceptual lens with which researchers see