882 resultados para Native forests


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We grow ultra-high mass density carbon nanotube forests at 450°C on Ti-coated Cu supports using Co-Mo co-catalyst. X-ray photoelectron spectroscopy shows Mo strongly interacts with Ti and Co, suppressing both aggregation and lifting off of Co particles and, thus, promoting the root growth mechanism. The forests average a height of 0.38 μm and a mass density of 1.6 g cm -3. This mass density is the highest reported so far, even at higher temperatures or on insulators. The forests and Cu supports show ohmic conductivity (lowest resistance ∼22 kΩ), suggesting Co-Mo is useful for applications requiring forest growth on conductors. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the transition energy levels of the vacancy defects in gallium nitride by means of a hybrid density functional theory approach (DFT). We show that, in contrast to predictions from a recent study on the level of purely local DFT, the inclusion of screened exchange stabilizes the triply positive charge state of the nitrogen vacancy for Fermi energies close to the valence band. On the other hand, the defect levels associated with the negative charge states of the nitrogen vacancy hybridize with the conduction band and turn out to be energetically unfavorable, except for high n-doping. For the gallium vacancy, the increased magnetic splitting between up-spin and down-spin bands due to stronger exchange interactions in sX-LDA pushes the defect levels deeper into the band gap and significantly increases the associated charge transition levels. Based on these results, we propose the ϵ(0| - 1) transition level as an alternative candidate for the yellow luminescence in GaN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We systematically study the growth of carbon nanotube forests by chemical vapor deposition using evaporated monometallic or bimetallic Ni, Co, or Fe films supported on alumina. Our results show two regimes of catalytic activity. When the total thickness of catalyst is larger than nominally 1nm, bimetallic catalysts tend to outperform the equivalent layers of a single metal, yielding taller forests of multi-walled carbon nanotubes (CNTs). In contrast, for layers thinner than ~1nm, bimetallic catalysts are notably less active than individually. However, the amount of small diameter and single-walled CNTs is significantly increased. This possible transition at ~1nm might be related to different catalyst composition after annealing, depending whether or not the films overlap during evaporation and alloy during catalyst formation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the fabrication and characterization of hybrids of vertically-aligned carbon nanotube forests and gold nanoparticles for improved manipulation of their plasmonic properties. Raman spectroscopy of nanotube forests performed at the separation area of nanotube-nanoparticles shows a scattering enhancement factor of the order of 1 × 10(6). The enhancement is related to the plasmonic coupling of the nanoparticles and is potentially applicable in high-resolution scanning near-field optical microscopy, plasmonics, and photovoltaics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage. © 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the electronic structure and native defects intransparent conducting oxides CuScO2 and CuYO2 using the first-principle calculations. Some typical native copper-related and oxygen-related defects, such as vacancy, interstitials, and antisites in their relevant charge state are considered. The results of calculation show that, CuMO2 (M = Sc, Y) is impossible to shown-type conductivity ability. It finds that copper vacancy and oxygen interstitial have relatively low formation energy and they are the relevant defects in CuScO2 and CuYO2. Copper vacancy is the most efficient acceptor, and under O-rich condition oxygen antisite also becomes important acceptor and plays an important role in p-type conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Native point defects in the rutile TiO2 are studied via first-principles pseudopotential calculations. Except for the two antisite defects, all the native point defects have low formation energies. Under the Ti-rich growth condition, high concentrations of titanium interstitials and oxygen vacancies would form spontaneously in p-type samples; whereas high concentrations of titanium vacancies would form spontaneously in n-type samples regardless of the oxygen partial pressure. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hall effect, Raman scattering, photoluminescence spectroscopy (PL), optical absorption (OA), mass spectroscopy, and X-ray diffraction have been used to study bulk ZnO single crystal grown by a closed chemical vapor transport method. The results indicate that shallow donor impurities (Ga and Al) are the dominant native defects responsible for n-type conduction of the ZnO single crystal. PL and OA results suggest that the as-grown and annealed ZnO samples with poor lattice perfection exhibit strong deep level green photoluminescence and weak ultraviolet luminescence. The deep level defect in as-grown ZnO is identified to be oxygen vacancy. After high-temperature annealing, the deep level photoluminescence is suppressed in ZnO crystal with good lattice perfection. In contrast, the photoluminescence is nearly unchanged or even enhanced in ZnO crystal with grain boundary or mosaic structure. This result indicates that a trapping effect of the defect exists at the grain boundary in ZnO single crystal. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By employing first-principle total-energy calculations, a systematic study of the dopability of ZnS to be both n- and p-types compared with that of ZnO is carried out. We find that all the attempted acceptor dopants, group V substituting on the S lattice site and group I and IB on the Zn sites in ZnS, have lower ionization energies than the corresponding ones in ZnO. This can be accounted for by the fact that ZnS has relative higher valence band maximum than ZnO. Native ZnS is weak p-type under S-rich condition, as the abundant acceptor V-Zn has rather large ionization energy. Self-compensations by the formation of interstitial donors in group I and IB-doped p-type ZnS can be avoided when sample is prepared under S-rich condition. In terms of ionization energies, Li-Zn and N-S are the preferred acceptors in ZnS. Native n- type doping of ZnS is limited by the spontaneous formation of intrinsic V-Zn(2-); high efficient n-type doping with dopants is harder to achieve than in ZnO because of the readiness of forming native compensating centers and higher ionization energy of donors in ZnS. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3103585]