829 resultados para NETWORK MODEL
Resumo:
This paper presents a robust stochastic model for the incorporation of natural features within data fusion algorithms. The representation combines Isomap, a non-linear manifold learning algorithm, with Expectation Maximization, a statistical learning scheme. The representation is computed offline and results in a non-linear, non-Gaussian likelihood model relating visual observations such as color and texture to the underlying visual states. The likelihood model can be used online to instantiate likelihoods corresponding to observed visual features in real-time. The likelihoods are expressed as a Gaussian Mixture Model so as to permit convenient integration within existing nonlinear filtering algorithms. The resulting compactness of the representation is especially suitable to decentralized sensor networks. Real visual data consisting of natural imagery acquired from an Unmanned Aerial Vehicle is used to demonstrate the versatility of the feature representation.
Resumo:
While hybrid governance arrangements have been a major element of organisational architecture for some time, the contemporary operating environment has brought to the fore new conditions and expectations for the governance of entities that span conventional public sector departments, private firms and community organisations or groups. These conditions have resulted in a broader array of mixed governance configurations including Public Private Partnerships, alliances, and formal and informal collaborations. In some such arrangements, market based or ‘complete’ contractual relationships have been introduced to replace or supplement existing traditional ‘hierarchical’ and/or newer relational ‘network-oriented’ institutional associations. While there has been a greater reliance on collaborative or relational contracts as an underpinning institutional model, other modes of hierarchy and market may remain in operation. The success of these emergent hybrid forms has been mixed. There are examples of hybrids that have been well adopted, achieving the desired goals of efficiency, effectiveness and financial accountability; while others have experienced implementation problems which have undermined their results. This paper postulates that the cultural and institutional context within which hybrids operate may contribute to the implementation processes employed and the level of success attained. The paper explores hybrid arrangements through three cases of the use of inter-organisational arrangements in three different national contexts. Distilling the various elements of hybrids and the impact of institutional context will provide important insights for those charged with the responsibility for the formation and key infrastructure and public value development.
Resumo:
Estimating potential health risks associated with recycled (reused) water is highly complex given the multiple factors affecting water quality. We take a conceptual model, which represents the factors and pathways by which recycled water may pose a risk of contracting gastroenteritis, convert the conceptual model to a Bayesian net, and quantify the model using one expert’s opinion. This allows us to make various predictions as to the risks posed under various scenarios. Bayesian nets provide an additional way of modeling the determinants of recycled water quality and elucidating their relative influence on a given disease outcome. The important contribution to Bayesian net methodology is that all model predictions, whether risk or relative risk estimates, are expressed as credible intervals.
Resumo:
A number of instructors have recently adopted social network sites (SNSs) for learning. However, the learning design of SNSs often remains at a preliminary level similar to a personal log book because it does not properly include reflective learning elements such as individual reflection and collaboration. This article looks at the reflective learning process and the public writing process as a way of improving the quality of reflective learning on SNSs. It proposes a reflective learning model on SNSs based on two key pedagogical concepts for social networking: individual expression and collaborative connection. It is expected that the model would be helpful for instructors in designing a reflective learning process on SNSs in an effective and flexible way.
Resumo:
This article looks at a Chinese Web 2.0 original literature site, Qidian, in order to show the coevolution of market and non-market initiatives. The analytic framework of social network markets (Potts et al., 2008) is employed to analyse the motivations of publishing original literature works online and to understand the support mechanisms of the site, which encourage readers’ willingness to pay for user-generated content. The co-existence of socio-cultural and commercial economies and their impact on the successful business model of the site are illustrated in this case. This article extends the concept of social network markets by proposing the existence of a ripple effect of social network markets through convergence between PC and mobile internet, traditional and internet publishing, and between publishing and other cultural industries. It also examines the side effects of social network markets, and the role of market and non-market strategies in addressing the issues.
Resumo:
A trend in design and implementation of modern industrial automation systems is to integrate computing, communication and control into a unified framework at different levels of machine/factory operations and information processing. These distributed control systems are referred to as networked control systems (NCSs). They are composed of sensors, actuators, and controllers interconnected over communication networks. As most of communication networks are not designed for NCS applications, the communication requirements of NCSs may be not satisfied. For example, traditional control systems require the data to be accurate, timely and lossless. However, because of random transmission delays and packet losses, the control performance of a control system may be badly deteriorated, and the control system rendered unstable. The main challenge of NCS design is to both maintain and improve stable control performance of an NCS. To achieve this, communication and control methodologies have to be designed. In recent decades, Ethernet and 802.11 networks have been introduced in control networks and have even replaced traditional fieldbus productions in some real-time control applications, because of their high bandwidth and good interoperability. As Ethernet and 802.11 networks are not designed for distributed control applications, two aspects of NCS research need to be addressed to make these communication networks suitable for control systems in industrial environments. From the perspective of networking, communication protocols need to be designed to satisfy communication requirements for NCSs such as real-time communication and high-precision clock consistency requirements. From the perspective of control, methods to compensate for network-induced delays and packet losses are important for NCS design. To make Ethernet-based and 802.11 networks suitable for distributed control applications, this thesis develops a high-precision relative clock synchronisation protocol and an analytical model for analysing the real-time performance of 802.11 networks, and designs a new predictive compensation method. Firstly, a hybrid NCS simulation environment based on the NS-2 simulator is designed and implemented. Secondly, a high-precision relative clock synchronization protocol is designed and implemented. Thirdly, transmission delays in 802.11 networks for soft-real-time control applications are modeled by use of a Markov chain model in which real-time Quality-of- Service parameters are analysed under a periodic traffic pattern. By using a Markov chain model, we can accurately model the tradeoff between real-time performance and throughput performance. Furthermore, a cross-layer optimisation scheme, featuring application-layer flow rate adaptation, is designed to achieve the tradeoff between certain real-time and throughput performance characteristics in a typical NCS scenario with wireless local area network. Fourthly, as a co-design approach for both a network and a controller, a new predictive compensation method for variable delay and packet loss in NCSs is designed, where simultaneous end-to-end delays and packet losses during packet transmissions from sensors to actuators is tackled. The effectiveness of the proposed predictive compensation approach is demonstrated using our hybrid NCS simulation environment.
Resumo:
Distributed pipeline assets systems are crucial to society. The deterioration of these assets and the optimal allocation of limited budget for their maintenance correspond to crucial challenges for water utility managers. Decision makers should be assisted with optimal solutions to select the best maintenance plan concerning available resources and management strategies. Much research effort has been dedicated to the development of optimal strategies for maintenance of water pipes. Most of the maintenance strategies are intended for scheduling individual water pipe. Consideration of optimal group scheduling replacement jobs for groups of pipes or other linear assets has so far not received much attention in literature. It is a common practice that replacement planners select two or three pipes manually with ambiguous criteria to group into one replacement job. This is obviously not the best solution for job grouping and may not be cost effective, especially when total cost can be up to multiple million dollars. In this paper, an optimal group scheduling scheme with three decision criteria for distributed pipeline assets maintenance decision is proposed. A Maintenance Grouping Optimization (MGO) model with multiple criteria is developed. An immediate challenge of such modeling is to deal with scalability of vast combinatorial solution space. To address this issue, a modified genetic algorithm is developed together with a Judgment Matrix. This Judgment Matrix is corresponding to various combinations of pipe replacement schedules. An industrial case study based on a section of a real water distribution network was conducted to test the new model. The results of the case study show that new schedule generated a significant cost reduction compared with the schedule without grouping pipes.
Resumo:
Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method.
Resumo:
This important work describes recent theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Chapters survey research on pattern classification with binary-output networks, including a discussion of the relevance of the Vapnik Chervonenkis dimension, and of estimates of the dimension for several neural network models. In addition, Anthony and Bartlett develop a model of classification by real-output networks, and demonstrate the usefulness of classification with a "large margin." The authors explain the role of scale-sensitive versions of the Vapnik Chervonenkis dimension in large margin classification, and in real prediction. Key chapters also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient, constructive learning algorithms. The book is self-contained and accessible to researchers and graduate students in computer science, engineering, and mathematics
Resumo:
This paper presents a group maintenance scheduling case study for a water distributed network. This water pipeline network presents the challenge of maintaining aging pipelines with the associated increases in annual maintenance costs. The case study focuses on developing an effective maintenance plan for the water utility. Current replacement planning is difficult as it needs to balance the replacement needs under limited budgets. A Maintenance Grouping Optimization (MGO) model based on a modified genetic algorithm was utilized to develop an optimum group maintenance schedule over a 20-year cycle. The adjacent geographical distribution of pipelines was used as a grouping criterion to control the searching space of the MGO model through a Judgment Matrix. Based on the optimum group maintenance schedule, the total cost was effectively reduced compared with the schedules without grouping maintenance jobs. This optimum result can be used as a guidance to optimize the current maintenance plan for the water utility.
Resumo:
In this paper we construct a mathematical model for the genetic regulatory network of the lactose operon. This mathematical model contains transcription and translation of the lactose permease (LacY) and a reporter gene GFP. The probability of transcription of LacY is determined by 14 binding states out of all 50 possible binding states of the lactose operon based on the quasi-steady-state assumption for the binding reactions, while we calculate the probability of transcription for the reporter gene GFP based on 5 binding states out of 19 possible binding states because the binding site O2 is missing for this reporter gene. We have tested different mechanisms for the transport of thio-methylgalactoside (TMG) and the effect of different Hill coefficients on the simulated LacY expression levels. Using this mathematical model we have realized one of the experimental results with different LacY concentrations, which are induced by different concentrations of TMG.
Resumo:
The paper investigates train scheduling problems when prioritised trains and non-prioritised trains are simultaneously traversed in a single-line rail network. In this case, no-wait conditions arise because the prioritised trains such as express passenger trains should traverse continuously without any interruption. In comparison, non-prioritised trains such as freight trains are allowed to enter the next section immediately if possible or to remain in a section until the next section on the routing becomes available, which is thought of as a relaxation of no-wait conditions. With thorough analysis of the structural properties of the No-Wait Blocking Parallel-Machine Job-Shop-Scheduling (NWBPMJSS) problem that is originated in this research, an innovative generic constructive algorithm (called NWBPMJSS_Liu-Kozan) is proposed to construct the feasible train timetable in terms of a given order of trains. In particular, the proposed NWBPMJSS_Liu-Kozan constructive algorithm comprises several recursively-used sub-algorithms (i.e. Best-Starting-Time-Determination Procedure, Blocking-Time-Determination Procedure, Conflict-Checking Procedure, Conflict-Eliminating Procedure, Tune-up Procedure and Fine-tune Procedure) to guarantee feasibility by satisfying the blocking, no-wait, deadlock-free and conflict-free constraints. A two-stage hybrid heuristic algorithm (NWBPMJSS_Liu-Kozan-BIH) is developed by combining the NWBPMJSS_Liu-Kozan constructive algorithm and the Best-Insertion-Heuristic (BIH) algorithm to find the preferable train schedule in an efficient and economical way. Extensive computational experiments show that the proposed methodology is promising because it can be applied as a standard and fundamental toolbox for identifying, analysing, modelling and solving real-world scheduling problems.
Resumo:
This chapter proposes a conceptual model for optimal development of needed capabilities for the contemporary knowledge economy. We commence by outlining key capability requirements of the 21st century knowledge economy, distinguishing these from those suited to the earlier stages of the knowledge economy. We then discuss the extent to which higher education currently caters to these requirements and then put forward a new model for effective knowledge economy capability learning. The core of this model is the development of an adaptive and adaptable career identity, which is created through a reflective process of career self-management, drawing upon data from the self and the world of work. In turn, career identity drives the individual’s process of skill and knowledge acquisition, including deep disciplinary knowledge. The professional capability learning thus acquired includes disciplinary skill and knowledge sets, generic skills, and also skills for the knowledge economy, including disciplinary agility, social network capability, and enterprise skills. In the final part of this chapter, we envision higher education systems that embrace the model, and suggest steps that could be taken toward making the development of knowledge economy capabilities an integral part of the university experience.
Resumo:
A key issue for the economic development and for performance of organizations is the existence of standards. As their definitions and control are source of power, it seems to be important to understand the concept and to wonder about the representations authorized by the concept which give their direction and their legitimacy. The difficulties of classical microeconomics of establishing a theory of standardisation compatible with its fundamental axiomatic are underlined. We propose to reconsider the problem by carrying out the opposite way: to question the theoretical base, by reformulating assumptions on the autonomy of the choice of the actors. The theory of conventions will offer us both a theoretical framework and tools, enabling us to understand the systemic dimension and dynamic structure of standards seen as special case of conventions. This work aims thus to provide a sound basis and promote a better consciousness in the development of global project management standards, aiming also to underline that social construction is not a matter of copyright but a matter of open minds, collective cognitive process and freedom for the common wealth.