985 resultados para Multilevel Modelling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Valuma-aluetason mallisovellus suojakaistojen käytöstä eroosion torjunnassa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: This study examined the respective roles of personal and environmental factors in youth violence in a nationally representative sample of 7548 postmandatory school students and apprentices ages 16-20 years in Switzerland. METHODS: Youth violence was defined as having committed at least one of the following in the previous 12 months: attacking an adult, snatching something, carrying a weapon, or using a weapon in a fight. Different ecological levels were tested, resulting in a three-level model only in males (individual, classroom, and school) as the low prevalence of female violence did not allow for a multilevel analysis. Dependent variables were attributed to each level. For males, the classroom level (10%) and the school level (24%) accounted for more than one third in interindividual variance. RESULTS: Factors associated with violence perpetration in females were being a victim of physical violence and sensation seeking at the individual level. In males, practicing unsafe sex, sensation seeking, being a victim of physical violence, having a poor relationship with parents, being depressed, and living in a single-parent household at the individual level; violence and antisocial acts at the classroom level; and being in a vocational school at the school level showed a correlation with violence perpetration. CONCLUSION: Interventions at the classroom level as well as an explicit school policy on violence and other risk behaviors should be considered a priority when dealing with the problem of youth violence. Furthermore, prevention should take into account gender differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the use of ensemble of predictors in order to improve the performance of spatial prediction methods. Support vector regression (SVR), a popular method from the field of statistical machine learning, is used. Several instances of SVR are combined using different data sampling schemes (bagging and boosting). Bagging shows good performance, and proves to be more computationally efficient than training a single SVR model while reducing error. Boosting, however, does not improve results on this specific problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and theoretical investigations for growth of silicon nanoparticles (4 to 14 nm) in radio frequency discharge were carried out. Growth processes were performed with gas mixtures of SiH4 and Ar in a plasma chemical reactor at low pressure. A distinctive feature of presented kinetic model of generation and growth of nanoparticles (compared to our earlier model) is its ability to investigate small"critical" dimensions of clusters, determining the rate of particle production and taking into account the influence of SiH2 and Si2Hm dimer radicals. The experiments in the present study were extended to high pressure (≥20 Pa) and discharge power (≥40 W). Model calculations were compared to experimental measurements, investigating the dimension of silicon nanoparticles as a function of time, discharge power, gas mixture, total pressure, and gas flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluate the performance of different optimization techniques developed in the context of optical flow computation with different variational models. In particular, based on truncated Newton methods (TN) that have been an effective approach for large-scale unconstrained optimization, we de- velop the use of efficient multilevel schemes for computing the optical flow. More precisely, we evaluate the performance of a standard unidirectional mul- tilevel algorithm - called multiresolution optimization (MR/OPT), to a bidrec- tional multilevel algorithm - called full multigrid optimization (FMG/OPT). The FMG/OPT algorithm treats the coarse grid correction as an optimiza- tion search direction and eventually scales it using a line search. Experimental results on different image sequences using four models of optical flow com- putation show that the FMG/OPT algorithm outperforms both the TN and MR/OPT algorithms in terms of the computational work and the quality of the optical flow estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Bone health is a concern when treating early stage breast cancer patients with adjuvant aromatase inhibitors. Early detection of patients (pts) at risk of osteoporosis and fractures may be helpful for starting preventive therapies and selecting the most appropriate endocrine therapy schedule. We present statistical models describing the evolution of lumbar and hip bone mineral density (BMD) in pts treated with tamoxifen (T), letrozole (L) and sequences of T and L. Methods: Available dual-energy x-ray absorptiometry exams (DXA) of pts treated in trial BIG 1-98 were retrospectively collected from Swiss centers. Treatment arms: A) T for 5 years, B) L for 5 years, C) 2 years of T followed by 3 years of L and, D) 2 years of L followed by 3 years of T. Pts without DXA were used as a control for detecting selection biases. Patients randomized to arm A were subsequently allowed an unplanned switch from T to L. Allowing for variations between DXA machines and centres, two repeated measures models, using a covariance structure that allow for different times between DXA, were used to estimate changes in hip and lumbar BMD (g/cm2) from trial randomization. Prospectively defined covariates, considered as fixed effects in the multivariable models in an intention to treat analysis, at the time of trial randomization were: age, height, weight, hysterectomy, race, known osteoporosis, tobacco use, prior bone fracture, prior hormone replacement therapy (HRT), bisphosphonate use and previous neo-/adjuvant chemotherapy (ChT). Similarly, the T-scores for lumbar and hip BMD measurements were modeled using a per-protocol approach (allowing for treatment switch in arm A), specifically studying the effect of each therapy upon T-score percentage. Results: A total of 247 out of 546 pts had between 1 and 5 DXA; a total of 576 DXA were collected. Number of DXA measurements per arm were; arm A 133, B 137, C 141 and D 135. The median follow-up time was 5.8 years. Significant factors positively correlated with lumbar and hip BMD in the multivariate analysis were weight, previous HRT use, neo-/adjuvant ChT, hysterectomy and height. Significant negatively correlated factors in the models were osteoporosis, treatment arm (B/C/D vs. A), time since endocrine therapy start, age and smoking (current vs. never).Modeling the T-score percentage, differences from T to L were -4.199% (p = 0.036) and -4.907% (p = 0.025) for the hip and lumbar measurements respectively, before any treatment switch occurred. Conclusions: Our statistical models describe the lumbar and hip BMD evolution for pts treated with L and/or T. The results of both localisations confirm that, contrary to expectation, the sequential schedules do not seem less detrimental for the BMD than L monotherapy. The estimated difference in BMD T-score percent is at least 4% from T to L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interviewer performance with respect to convincing sample members to participate in surveys is an important dimension of survey quality. However, unlike in CAPI surveys where each sample case 'belongs' to one interviewer, there are hardly any good measures of interview performance for centralised CATI surveys, where even single contacts are assigned to interviewers at random. If more than one interviewer works one sample case, it is not clear how to attribute success or failure to the interviewers involved. In this article, we propose two correlated methods to measure interviewer contact performance in centralised CATI surveys. Their modelling must take complex multilevel clustering effects, which need not be hierarchical, into account. Results are consistent with findings from CAPI data modelling, and we find that when comparing effects with a direct ('naive') measure of interviewer contact results, interviewer random effects are largely underestimated using the naive measure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The ecological niche is a fundamental biological concept. Modelling species' niches is central to numerous ecological applications, including predicting species invasions, identifying reservoirs for disease, nature reserve design and forecasting the effects of anthropogenic and natural climate change on species' ranges. 2. A computational analogue of Hutchinson's ecological niche concept (the multidimensional hyperspace of species' environmental requirements) is the support of the distribution of environments in which the species persist. Recently developed machine-learning algorithms can estimate the support of such high-dimensional distributions. We show how support vector machines can be used to map ecological niches using only observations of species presence to train distribution models for 106 species of woody plants and trees in a montane environment using up to nine environmental covariates. 3. We compared the accuracy of three methods that differ in their approaches to reducing model complexity. We tested models with independent observations of both species presence and species absence. We found that the simplest procedure, which uses all available variables and no pre-processing to reduce correlation, was best overall. Ecological niche models based on support vector machines are theoretically superior to models that rely on simulating pseudo-absence data and are comparable in empirical tests. 4. Synthesis and applications. Accurate species distribution models are crucial for effective environmental planning, management and conservation, and for unravelling the role of the environment in human health and welfare. Models based on distribution estimation rather than classification overcome theoretical and practical obstacles that pervade species distribution modelling. In particular, ecological niche models based on machine-learning algorithms for estimating the support of a statistical distribution provide a promising new approach to identifying species' potential distributions and to project changes in these distributions as a result of climate change, land use and landscape alteration.