905 resultados para Multi-objective optimization problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O planeamento de redes de distribuição tem como objetivo assegurar a existência de capacidade nas redes para a fornecimento de energia elétrica com bons níveis de qualidade de serviço tendo em conta os fatores económicos associados. No âmbito do trabalho apresentado na presente dissertação, foi elaborado um modelo de planeamento que determina a configuração de rede resultante da minimização de custos associados a: 1) perdas por efeito de joule; 2) investimento em novos componentes; 3) energia não entregue. A incerteza associada ao valor do consumo de cada carga é modelada através de lógica difusa. O problema de otimização definido é resolvido pelo método de decomposição de benders que contempla dois trânsitos de potências ótimos (modelo DC e modelo AC) no problema mestre e escravo respectivamente para validação de restrições. Foram também definidos critérios de paragem do método de decomposição de benders. O modelo proposto classifica-se como programação não linear inteira mista e foi implementado na ferramenta de otimização General Algebraic Modeling System (GAMS). O modelo desenvolvido tem em conta todos componentes das redes para a otimização do planeamento, conforme podemos analisar nos casos de estudo implementados. Cada caso de estudo é definido pela variação da importância que cada uma das variáveis do problema toma, tendo em vista cobrir de alguma todos os cenários de operação expetáveis. Através destes casos de estudo verifica-se as várias configurações que a rede pode tomar, tendo em conta as importâncias atribuídas a cada uma das variáveis, bem como os respetivos custos associados a cada solução. Este trabalho oferece um considerável contributo no âmbito do planeamento de redes de distribuição, pois comporta diferentes variáveis para a execução do mesmo. É também um modelo bastante robusto não perdendo o ‘norte’ no encontro de solução para redes de grande dimensão, com maior número de componentes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Logica Computicional

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Industrial e de Sistemas (PDEIS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incorporating adaptive learning into macroeconomics requires assumptions about how agents incorporate their forecasts into their decision-making. We develop a theory of bounded rationality that we call finite-horizon learning. This approach generalizes the two existing benchmarks in the literature: Eulerequation learning, which assumes that consumption decisions are made to satisfy the one-step-ahead perceived Euler equation; and infinite-horizon learning, in which consumption today is determined optimally from an infinite-horizon optimization problem with given beliefs. In our approach, agents hold a finite forecasting/planning horizon. We find for the Ramsey model that the unique rational expectations equilibrium is E-stable at all horizons. However, transitional dynamics can differ significantly depending upon the horizon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preface In this thesis we study several questions related to transaction data measured at an individual level. The questions are addressed in three essays that will constitute this thesis. In the first essay we use tick-by-tick data to estimate non-parametrically the jump process of 37 big stocks traded on the Paris Stock Exchange, and of the CAC 40 index. We separate the total daily returns in three components (trading continuous, trading jump, and overnight), and we characterize each one of them. We estimate at the individual and index levels the contribution of each return component to the total daily variability. For the index, the contribution of jumps is smaller and it is compensated by the larger contribution of overnight returns. We test formally that individual stocks jump more frequently than the index, and that they do not respond independently to the arrive of news. Finally, we find that daily jumps are larger when their arrival rates are larger. At the contemporaneous level there is a strong negative correlation between the jump frequency and the trading activity measures. The second essay study the general properties of the trade- and volume-duration processes for two stocks traded on the Paris Stock Exchange. These two stocks correspond to a very illiquid stock and to a relatively liquid stock. We estimate a class of autoregressive gamma process with conditional distribution from the family of non-central gamma (up to a scale factor). This process was introduced by Gouriéroux and Jasiak and it is known as Autoregressive gamma process. We also evaluate the ability of the process to fit the data. For this purpose we use the Diebold, Gunther and Tay (1998) test; and the capacity of the model to reproduce the moments of the observed data, and the empirical serial correlation and the partial serial correlation functions. We establish that the model describes correctly the trade duration process of illiquid stocks, but have problems to adjust correctly the trade duration process of liquid stocks which present long-memory characteristics. When the model is adjusted to volume duration, it successfully fit the data. In the third essay we study the economic relevance of optimal liquidation strategies by calibrating a recent and realistic microstructure model with data from the Paris Stock Exchange. We distinguish the case of parameters which are constant through the day from time-varying ones. An optimization problem incorporating this realistic microstructure model is presented and solved. Our model endogenizes the number of trades required before the position is liquidated. A comparative static exercise demonstrates the realism of our model. We find that a sell decision taken in the morning will be liquidated by the early afternoon. If price impacts increase over the day, the liquidation will take place more rapidly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous paper a novel Generalized Multiobjective Multitree model (GMM-model) was proposed. This model considers for the first time multitree-multicast load balancing with splitting in a multiobjective context, whose mathematical solution is a whole Pareto optimal set that can include several results than it has been possible to find in the publications surveyed. To solve the GMM-model, in this paper a multi-objective evolutionary algorithm (MOEA) inspired by the Strength Pareto Evolutionary Algorithm (SPEA) is proposed. Experimental results considering up to 11 different objectives are presented for the well-known NSF network, with two simultaneous data flows

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper derives the HJB (Hamilton-Jacobi-Bellman) equation for sophisticated agents in a finite horizon dynamic optimization problem with non-constant discounting in a continuous setting, by using a dynamic programming approach. A simple example is used in order to illustrate the applicability of this HJB equation, by suggesting a method for constructing the subgame perfect equilibrium solution to the problem.Conditions for the observational equivalence with an associated problem with constantdiscounting are analyzed. Special attention is paid to the case of free terminal time. Strotz¿s model (an eating cake problem of a nonrenewable resource with non-constant discounting) is revisited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: When planning SIRT using 90Y microspheres, the partition model is used to refine the activity calculated by the body surface area (BSA) method to potentially improve the safety and efficacy of treatment. For this partition model dosimetry, accurate determination of mean tumor-to-normal liver ratio (TNR) is critical since it directly impacts absorbed dose estimates. This work aimed at developing and assessing a reliable methodology for the calculation of 99mTc-MAA SPECT/CT-derived TNR ratios based on phantom studies. Materials and methods: IQ NEMA (6 hot spheres) and Kyoto liver phantoms with different hot/background activity concentration ratios were imaged on a SPECT/CT (GE Infinia Hawkeye 4). For each reconstruction with the IQ phantom, TNR quantification was assessed in terms of relative recovery coefficients (RC) and image noise was evaluated in terms of coefficient of variation (COV) in the filled background. RCs were compared using OSEM with Hann, Butterworth and Gaussian filters, as well as FBP reconstruction algorithms. Regarding OSEM, RCs were assessed by varying different parameters independently, such as the number of iterations (i) and subsets (s) and the cut-off frequency of the filter (fc). The influence of the attenuation and diffusion corrections was also investigated. Furthermore, both 2D-ROIs and 3D-VOIs contouring were compared. For this purpose, dedicated Matlab© routines were developed in-house for automatic 2D-ROI/3D-VOI determination to reduce intra-user and intra-slice variability. Best reconstruction parameters and RCs obtained with the IQ phantom were used to recover corrected TNR in case of the Kyoto phantom for arbitrary hot-lesion size. In addition, we computed TNR volume histograms to better assess uptake heterogeneityResults: The highest RCs were obtained with OSEM (i=2, s=10) coupled with the Butterworth filter (fc=0.8). Indeed, we observed a global 20% RC improvement over other OSEM settings and a 50% increase as compared to the best FBP reconstruction. In any case, both attenuation and diffusion corrections must be applied, thus improving RC while preserving good image noise (COV<10%). Both 2D-ROI and 3D-VOI analysis lead to similar results. Nevertheless, we recommend using 3D-VOI since tumor uptake regions are intrinsically 3D. RC-corrected TNR values lie within 17% around the true value, substantially improving the evaluation of small volume (<15 mL) regions. Conclusions: This study reports the multi-parameter optimization of 99mTc MAA SPECT/CT images reconstruction in planning 90Y dosimetry for SIRT. In phantoms, accurate quantification of TNR was obtained using OSEM coupled with Butterworth and RC correction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper derives the HJB (Hamilton-Jacobi-Bellman) equation for sophisticated agents in a finite horizon dynamic optimization problem with non-constant discounting in a continuous setting, by using a dynamic programming approach. A simple example is used in order to illustrate the applicability of this HJB equation, by suggesting a method for constructing the subgame perfect equilibrium solution to the problem.Conditions for the observational equivalence with an associated problem with constantdiscounting are analyzed. Special attention is paid to the case of free terminal time. Strotz¿s model (an eating cake problem of a nonrenewable resource with non-constant discounting) is revisited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new framework for large-scale data clustering. The main idea is to modify functional dimensionality reduction techniques to directly optimize over discrete labels using stochastic gradient descent. Compared to methods like spectral clustering our approach solves a single optimization problem, rather than an ad-hoc two-stage optimization approach, does not require a matrix inversion, can easily encode prior knowledge in the set of implementable functions, and does not have an ?out-of-sample? problem. Experimental results on both artificial and real-world datasets show the usefulness of our approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, we obtain the Maximum LikelihoodEstimator of position in the framework of Global NavigationSatellite Systems. This theoretical result is the basis of a completelydifferent approach to the positioning problem, in contrastto the conventional two-steps position estimation, consistingof estimating the synchronization parameters of the in-viewsatellites and then performing a position estimation with thatinformation. To the authors’ knowledge, this is a novel approachwhich copes with signal fading and it mitigates multipath andjamming interferences. Besides, the concept of Position–basedSynchronization is introduced, which states that synchronizationparameters can be recovered from a user position estimation. Weprovide computer simulation results showing the robustness ofthe proposed approach in fading multipath channels. The RootMean Square Error performance of the proposed algorithm iscompared to those achieved with state-of-the-art synchronizationtechniques. A Sequential Monte–Carlo based method is used todeal with the multivariate optimization problem resulting fromthe ML solution in an iterative way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sähkökäytön valintaan vaikuttavat useat eri tekijät. Sähkökäytön valinnan perusteena voidaan käyttää tietoa prosessin tai toimilaitteen fysikaalisesta käyttäytymisestä. Valinnan perusteena voi olla myös riittävän suorituskyvyn tarve prosessissa. Tässä työssä tutustutaan sähkökäytön valintaan vaikuttaviin tekijöihinja sähkökäytön mitoitukseen. Työssä on keskitytty yleisempien pienjännitemoottorityyppien ja niiden säätöjen käsittelyyn. Useissa prosesseissa vaaditaan monen moottorin käyttöä saman kuorman liikuttamisessa. Monimoottorikäyttöjen ohjauksen tuntemus auttaa ongelmatilanteiden ratkaisussa ja antaa perusteet monimoottorikäytön valinnalle. Tässä työssä käsitellään monimoottorikäyttöjen pyörimisnopeuserojen ja vääntömomenttien epätasaisuuteen liittyviä ongelmia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Teollisuuden tuotannon eri prosessien optimointi on hyvin ajankohtainen aihe. Monet ohjausjärjestelmät ovat ajalta, jolloin tietokoneiden laskentateho oli hyvin vaatimaton nykyisiin verrattuna. Työssä esitetään tuotantoprosessi, joka sisältää teräksen leikkaussuunnitelman muodostamisongelman. Valuprosessi on yksi teräksen valmistuksen välivaiheita. Siinä sopivaan laatuun saatettu sula teräs valetaan linjastoon, jossa se jähmettyy ja leikataan aihioiksi. Myöhemmissä vaiheissa teräsaihioista muokataan pienempiä kokonaisuuksia, tehtaan lopputuotteita. Jatkuvavaletut aihiot voidaan leikata tilauskannasta riippuen monella eri tavalla. Tätä varten tarvitaan leikkaussuunnitelma, jonka muodostamiseksi on ratkaistava sekalukuoptimointiongelma. Sekalukuoptimointiongelmat ovat optimoinnin haastavin muoto. Niitä on tutkittu yksinkertaisempiin optimointiongelmiin nähden vähän. Nykyisten tietokoneiden laskentateho on kuitenkin mahdollistanut raskaampien ja monimutkaisempien optimointialgoritmien käytön ja kehittämisen. Työssä on käytetty ja esitetty eräs stokastisen optimoinnin menetelmä, differentiaalievoluutioalgoritmi. Tässä työssä esitetään teräksen leikkausoptimointialgoritmi. Kehitetty optimointimenetelmä toimii dynaamisesti tehdasympäristössä käyttäjien määrittelemien parametrien mukaisesti. Työ on osa Syncron Tech Oy:n Ovako Bar Oy Ab:lle toimittamaa ohjausjärjestelmää.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The changing business environment demands that chemical industrial processes be designed such that they enable the attainment of multi-objective requirements and the enhancement of innovativedesign activities. The requirements and key issues for conceptual process synthesis have changed and are no longer those of conventional process design; there is an increased emphasis on innovative research to develop new concepts, novel techniques and processes. A central issue, how to enhance the creativity of the design process, requires further research into methodologies. The thesis presentsa conflict-based methodology for conceptual process synthesis. The motivation of the work is to support decision-making in design and synthesis and to enhance the creativity of design activities. It deals with the multi-objective requirements and combinatorially complex nature of process synthesis. The work is carriedout based on a new concept and design paradigm adapted from Theory of InventiveProblem Solving methodology (TRIZ). TRIZ is claimed to be a `systematic creativity' framework thanks to its knowledge based and evolutionary-directed nature. The conflict concept, when applied to process synthesis, throws new lights on design problems and activities. The conflict model is proposed as a way of describing design problems and handling design information. The design tasks are represented as groups of conflicts and conflict table is built as the design tool. The general design paradigm is formulated to handle conflicts in both the early and detailed design stages. The methodology developed reflects the conflict nature of process design and synthesis. The method is implemented and verified through case studies of distillation system design, reactor/separator network design and waste minimization. Handling the various levels of conflicts evolve possible design alternatives in a systematic procedure which consists of establishing an efficient and compact solution space for the detailed design stage. The approach also provides the information to bridge the gap between the application of qualitative knowledge in the early stage and quantitative techniques in the detailed design stage. Enhancement of creativity is realized through the better understanding of the design problems gained from the conflict concept and in the improvement in engineering design practice via the systematic nature of the approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graph theory has provided a key mathematical framework to analyse the architecture of human brain networks. This architecture embodies an inherently complex relationship between connection topology, the spatial arrangement of network elements, and the resulting network cost and functional performance. An exploration of these interacting factors and driving forces may reveal salient network features that are critically important for shaping and constraining the brain's topological organization and its evolvability. Several studies have pointed to an economic balance between network cost and network efficiency with networks organized in an 'economical' small-world favouring high communication efficiency at a low wiring cost. In this study, we define and explore a network morphospace in order to characterize different aspects of communication efficiency in human brain networks. Using a multi-objective evolutionary approach that approximates a Pareto-optimal set within the morphospace, we investigate the capacity of anatomical brain networks to evolve towards topologies that exhibit optimal information processing features while preserving network cost. This approach allows us to investigate network topologies that emerge under specific selection pressures, thus providing some insight into the selectional forces that may have shaped the network architecture of existing human brains.