Large-scale clustering through functional embedding
Data(s) |
2008
|
---|---|
Resumo |
We present a new framework for large-scale data clustering. The main idea is to modify functional dimensionality reduction techniques to directly optimize over discrete labels using stochastic gradient descent. Compared to methods like spectral clustering our approach solves a single optimization problem, rather than an ad-hoc two-stage optimization approach, does not require a matrix inversion, can easily encode prior knowledge in the set of implementable functions, and does not have an ?out-of-sample? problem. Experimental results on both artificial and real-world datasets show the usefulness of our approach. |
Identificador |
http://serval.unil.ch/?id=serval:BIB_CBB83C90ECAE doi:10.1007/978-3-540-87481-2_18 isbn:978-3-540-87481-2 |
Idioma(s) |
en |
Publicador |
Springer Berlin Heidelberg |
Fonte |
European Conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, Antwerp, Belgium, September 15-19, Proceedings, Part II |
Tipo |
info:eu-repo/semantics/conferenceObject inproceedings |