Large-scale clustering through functional embedding


Autoria(s): Ratle F.; Weston J.; Miller M. L.; Daelemans W. (ed.); Goethals B. (ed.); Morik K. (ed.)
Data(s)

2008

Resumo

We present a new framework for large-scale data clustering. The main idea is to modify functional dimensionality reduction techniques to directly optimize over discrete labels using stochastic gradient descent. Compared to methods like spectral clustering our approach solves a single optimization problem, rather than an ad-hoc two-stage optimization approach, does not require a matrix inversion, can easily encode prior knowledge in the set of implementable functions, and does not have an ?out-of-sample? problem. Experimental results on both artificial and real-world datasets show the usefulness of our approach.

Identificador

http://serval.unil.ch/?id=serval:BIB_CBB83C90ECAE

doi:10.1007/978-3-540-87481-2_18

isbn:978-3-540-87481-2

Idioma(s)

en

Publicador

Springer Berlin Heidelberg

Fonte

European Conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, Antwerp, Belgium, September 15-19, Proceedings, Part II

Tipo

info:eu-repo/semantics/conferenceObject

inproceedings