910 resultados para Multi-Criteria Optimization
Resumo:
Background and objective: Optimal care of diabetic patients (DPs) decreases the risk of complications. Close blood glucose monitoring can improve patient outcomes and shorten hospital stay. The objective of this pilot study was to evaluate the treatment of hospitalized DPs according to the current standards, including their diabetic treatment and drugs to prevent diabetes related complications [=guardian drugs: angiotensin converting enzyme inhibitors (ACEI) or Angiotensin II Receptor Blockers (ARB), antiplatelet drugs, statins]. Guidelines of the American Diabetes Association (ADA) [1] were used as reference as they were the most recent and exhaustive for hospital care. Design: Observational pilot study: analysis of the medical records of all DPs seen by the clinical pharmacists during medical rounds in different hospital units. An assessment was made by assigning points for fulfilling the different criteria according to ADA and then by dividing the total by the maximum achievable points (scale 0-1; 1 = all criteria fulfilled). Setting: Different Internal Medicine and Geriatric Units of the (multi-site) Ho^pital du Valais. Main outcome measures: - Completeness of diabetes-related information: type of diabetes, medical history, weight, albuminuria status, renal function, blood pressure, (recent) lipid profile. - Management of blood glucose: Hb1Ac, glycemic control, plan for treating hyper-/hypoglycaemia. - Presence of guardian drugs if indicated. Results: Medical records of 42 patients in 10 different units were analysed (18 women, 24 men, mean age 75.4 ± 11 years). 41 had type 2 diabetes. - Completeness of diabetes-related information: 0.8 ± 0.1. Information often missing: insulin-dependence (43%) and lipid profile (86%). - Management of blood glucose: 0.5 ± 0.2. 15 patients had suboptimal glycemic balance (target glycaemia 7.2-11.2 mmol/ l, with values[11.2 or\3.8 mmol/l, or Hb1Ac[7%), 10 patients had a deregulated balance (more than 10 values[11.2 mmol/l or \3.8 mmol/l and even values[15 mmol/l). - Presence of guardian drugs if indicated: ACEI/ARB: 19 of 23 patients (82.6%), statin: 16 of 40 patients (40%), antiplatelet drug: 16 of 39 patients (41%). Conclusions: Blood glucose control was insufficient in many DPs and prescription of statins and antiplatelet drugs was often missing. If confirmed by a larger study, these two points need to be optimised. As it is not always possible and appropriate to make those changes during hospital stay, a further project should assess and optimise diabetes care across both inpatient and outpatient settings.
Resumo:
The identity [r]evolution is happening. Who are you, who am I in the information society? In recent years, the convergence of several factors - technological, political, economic - has accelerated a fundamental change in our networked world. On a technological level, information becomes easier to gather, to store, to exchange and to process. The belief that more information brings more security has been a strong political driver to promote information gathering since September 11. Profiling intends to transform information into knowledge in order to anticipate one's behaviour, or needs, or preferences. It can lead to categorizations according to some specific risk criteria, for example, or to direct and personalized marketing. As a consequence, new forms of identities appear. They are not necessarily related to our names anymore. They are based on information, on traces that we leave when we act or interact, when we go somewhere or just stay in one place, or even sometimes when we make a choice. They are related to the SIM cards of our mobile phones, to our credit card numbers, to the pseudonyms that we use on the Internet, to our email addresses, to the IP addresses of our computers, to our profiles... Like traditional identities, these new forms of identities can allow us to distinguish an individual within a group of people, or describe this person as belonging to a community or a category. How far have we moved through this process? The identity [r]evolution is already becoming part of our daily lives. People are eager to share information with their "friends" in social networks like Facebook, in chat rooms, or in Second Life. Customers take advantage of the numerous bonus cards that are made available. Video surveillance is becoming the rule. In several countries, traditional ID documents are being replaced by biometric passports with RFID technologies. This raises several privacy issues and might actually even result in changing the perception of the concept of privacy itself, in particular by the younger generation. In the information society, our (partial) identities become the illusory masks that we choose -or that we are assigned- to interplay and communicate with each other. Rights, obligations, responsibilities, even reputation are increasingly associated with these masks. On the one hand, these masks become the key to access restricted information and to use services. On the other hand, in case of a fraud or negative reputation, the owner of such a mask can be penalized: doors remain closed, access to services is denied. Hence the current preoccupying growth of impersonation, identity-theft and other identity-related crimes. Where is the path of the identity [r]evolution leading us? The booklet is giving a glance on possible scenarios in the field of identity.
Resumo:
MOTIVATION: The detection of positive selection is widely used to study gene and genome evolution, but its application remains limited by the high computational cost of existing implementations. We present a series of computational optimizations for more efficient estimation of the likelihood function on large-scale phylogenetic problems. We illustrate our approach using the branch-site model of codon evolution. RESULTS: We introduce novel optimization techniques that substantially outperform both CodeML from the PAML package and our previously optimized sequential version SlimCodeML. These techniques can also be applied to other likelihood-based phylogeny software. Our implementation scales well for large numbers of codons and/or species. It can therefore analyse substantially larger datasets than CodeML. We evaluated FastCodeML on different platforms and measured average sequential speedups of FastCodeML (single-threaded) versus CodeML of up to 5.8, average speedups of FastCodeML (multi-threaded) versus CodeML on a single node (shared memory) of up to 36.9 for 12 CPU cores, and average speedups of the distributed FastCodeML versus CodeML of up to 170.9 on eight nodes (96 CPU cores in total).Availability and implementation: ftp://ftp.vital-it.ch/tools/FastCodeML/. CONTACT: selectome@unil.ch or nicolas.salamin@unil.ch.
Resumo:
Drug combinations can improve angiostatic cancer treatment efficacy and enable the reduction of side effects and drug resistance. Combining drugs is non-trivial due to the high number of possibilities. We applied a feedback system control (FSC) technique with a population-based stochastic search algorithm to navigate through the large parametric space of nine angiostatic drugs at four concentrations to identify optimal low-dose drug combinations. This implied an iterative approach of in vitro testing of endothelial cell viability and algorithm-based analysis. The optimal synergistic drug combination, containing erlotinib, BEZ-235 and RAPTA-C, was reached in a small number of iterations. Final drug combinations showed enhanced endothelial cell specificity and synergistically inhibited proliferation (p < 0.001), but not migration of endothelial cells, and forced enhanced numbers of endothelial cells to undergo apoptosis (p < 0.01). Successful translation of this drug combination was achieved in two preclinical in vivo tumor models. Tumor growth was inhibited synergistically and significantly (p < 0.05 and p < 0.01, respectively) using reduced drug doses as compared to optimal single-drug concentrations. At the applied conditions, single-drug monotherapies had no or negligible activity in these models. We suggest that FSC can be used for rapid identification of effective, reduced dose, multi-drug combinations for the treatment of cancer and other diseases.
Resumo:
Rautateillä käytettävät tavaravaunut ovat vanhenemassa hyvin nopeasti; tämä koskee niin Venäjää, Suomea, Ruotsia kuin laajemminkin Eurooppaa. Venäjällä ja Euroopassa on käytössä runsaasti vaunuja, jotka ovat jo ylittäneet niille suositeltavan käyttöiän. Silti niitä käytetään kuljetuksissa, kun näitä korvaavia uusia vaunuja ei ole tarpeeksi saatavilla. Uusimmat vaunut ovat yleensä vaunuja vuokraavien yritysten tai uusien rautatieoperaattorien hankkimia - tämä koskee erityisesti Venäjää, jossa vaunuvuokraus on noussut erittäin suosituksi vaihtoehdoksi. Ennusteissa kerrotaan vaunupulan kasvavan ainakin vuoteen 2010 saakka. Jos rautateiden suosio rahtikuljetusmuotona kasvaa, niin voimistuva vaunukysyntä jatkuu huomattavan paljon pidemmän aikaa. Euroopan ja Venäjän vaunukannan tilanne näkyy myös sitä palvelevan konepajateollisuuden ongelmina - yleisesti ottaen alan eurooppalaiset yritykset ovat heikosti kannattavia ja niiden liikevaihto ei juuri kasva, venäläiset ja ukrainalaiset yritykset ovat olleet samassa tilanteessa, joskin aivan viime vuosina tilanne on osassa kääntynyt paremmaksi. Kun näiden maanosien yritysten liikevaihtoa, voittoa ja omistaja-arvoa verrataan yhdysvaltalaisiin kilpailijoihin, huomataan että jälkimmäisten suoriutuminen on huomattavan paljon parempaa, ja näillä yrityksillä on myös kyky maksaa osinkoja omistajilleen. Tutkimuksen tarkoituksena oli kehittää uuden tyyppinen kuljetusvaunu Suomen, Venäjän sekä mahdollisesti myös Kiinan väliseen liikenteeseen. Vaunutyypin tarkoituksena olisi kyetä toimimaan monikäyttöisenä, niin raaka-aineiden kuin konttienkin kuljetuksessa, tasapainottaen kuljetusmuotojen aiheuttamaa kuljetuspaino-ongelmaa. Kehitystyön pohjana käytimme yli 1000 venäläisen vaunutyypin tietokantaa, josta valitsimme Data Envelopment Analysis -menetelmällä soveliaimmat vaunut kontinkuljetukseen (lähemmin tarkastelimme n. 40 vaunutyyppiä), jättäen mahdollisimman vähän tyhjää tilaa junaan, mutta silti kyeten kantamaan valitun konttilastin. Kun kantokykyongelmia venäläisissä vaunuissa ei useinkaan ole, on vertailu tehtävissä tavarajunan pituuden ja kokonaispainon perusteella. Simuloituamme yhdistettyihin kuljetuksiin soveliasta vaunutyyppiä käytännössä löytyvässä kuljetusverkostossa (esim. raakapuuta Suomeen tai Kiinaan ja kontteja takaisin Venäjän suuntaan), huomasimme lyhemmän vaunupituuden sisältävän kustannusetua, erityisesti raakaainekuljetuksissa, mutta myös rajanylityspaikkojen mahdollisesti vähentyessä. Lyhempi vaunutyyppi on myös joustavampi erilaisten konttipituuksien suhteen (40 jalan kontin käyttö on yleistynyt viime vuosina). Työn lopuksi ehdotamme uuden vaunutyypin tuotantotavaksi verkostomaista lähestymistapaa, jossa osa vaunusta tehtäisiin Suomessa ja osa Venäjällä ja/tai Ukrainassa. Vaunutyypin tulisi olla rekisteröity Venäjälle, sillä silloin sitä voi käyttää Suomen ja Venäjän, kuten myös soveltuvin osin Venäjän ja Kiinan välisessä liikenteessä.
Resumo:
This study shows the possibility offered by modern ultra-high performance supercritical fluid chromatography combined with tandem mass spectrometry in doping control analysis. A high throughput screening method was developed for 100 substances belonging to the challenging classes of anabolic agents, hormones and metabolic modulators, synthetic cannabinoids and glucocorticoids, which should be detected at low concentrations in urine. To selectively extract these doping agents from urine, a supported liquid extraction procedure was implemented in a 48-well plate format. At the tested concentration levels ranging from 0.5 to 5 ng/mL, the recoveries were better than 70% for 48-68% of the compounds and higher than 50% for 83-87% of the tested substances. Due to the numerous interferences related to isomers of steroids and ions produced by the loss of water in the electrospray source, the choice of SFC separation conditions was very challenging. After careful optimization, a Diol stationary phase was employed. The total analysis time for the screening assay was only 8 min, and interferences as well as susceptibility to matrix effect (ME) were minimized. With the developed method, about 70% of the compounds had relative ME within the range ±20%, at a concentration of 1 and 5 ng/mL. Finally, limits of detection achieved with the above-described strategy including 5-fold preconcentration were below 0.1 ng/mL for the majority of the tested compounds. Therefore, LODs were systematically better than the minimum required performance levels established by the World anti-doping agency, except for very few metabolites.
Resumo:
Global warming mitigation has recently become a priority worldwide. A large body of literature dealing with energy related problems has focused on reducing greenhouse gases emissions at an engineering scale. In contrast, the minimization of climate change at a wider macroeconomic level has so far received much less attention. We investigate here the issue of how to mitigate global warming by performing changes in an economy. To this end, we make use of a systematic tool that combines three methods: linear programming, environmentally extended input output models, and life cycle assessment principles. The problem of identifying key economic sectors that contribute significantly to global warming is posed in mathematical terms as a bi criteria linear program that seeks to optimize simultaneously the total economic output and the total life cycle CO2 emissions. We have applied this approach to the European Union economy, finding that significant reductions in global warming potential can be attained by regulating specific economic sectors. Our tool is intended to aid policymakers in the design of more effective public policies for achieving the environmental and economic targets sought.
Resumo:
The goal of the Master’s thesis is to develop and to analyze the optimization method for finding a geometry shape of classical horizontal wind turbine blades based on set of criteria. The thesis develops a technique that allows the designer to determine the weight of such factors as power coefficient, sound pressure level and the cost function in the overall process of blade shape optimization. The optimization technique applies the Desirability function. It was never used before in that kind of technical problems, and in this sense it can claim to originality of research. To do the analysis and the optimization processes more convenient the software application was developed.
Resumo:
The present research aimed to develop a modeling capable of identifying the ideal profile of swine finishing producers using the interactive performance optimization, which began by verifying qualitative the criteria considered most relevant to the decision-making, generating a closed structured diagnosis that covers the socioeconomic aspects about the activity, until the design of a mathematical model able to translate the data obtained in quantitative information. For the verification, it was proposed a practical study for a universe of 120 members of a cooperative in the state of Rio Grande do Sul, Brazil. The results showed that, from the application and the definition of the ideal profile, it was possible to verify that 82 producers are in the group of those who have obtained a "Good" performance, and to 44 the result is in the range between 86% to 90% from the ideal, which means that most have short or medium-term conditions to evolve their status for the considered "Very Good", where only 12.5% of the producers are currently.
Resumo:
The purpose of this thesis is twofold. The first and major part is devoted to sensitivity analysis of various discrete optimization problems while the second part addresses methods applied for calculating measures of solution stability and solving multicriteria discrete optimization problems. Despite numerous approaches to stability analysis of discrete optimization problems two major directions can be single out: quantitative and qualitative. Qualitative sensitivity analysis is conducted for multicriteria discrete optimization problems with minisum, minimax and minimin partial criteria. The main results obtained here are necessary and sufficient conditions for different stability types of optimal solutions (or a set of optimal solutions) of the considered problems. Within the framework of quantitative direction various measures of solution stability are investigated. A formula for a quantitative characteristic called stability radius is obtained for the generalized equilibrium situation invariant to changes of game parameters in the case of the H¨older metric. Quality of the problem solution can also be described in terms of robustness analysis. In this work the concepts of accuracy and robustness tolerances are presented for a strategic game with a finite number of players where initial coefficients (costs) of linear payoff functions are subject to perturbations. Investigation of stability radius also aims to devise methods for its calculation. A new metaheuristic approach is derived for calculation of stability radius of an optimal solution to the shortest path problem. The main advantage of the developed method is that it can be potentially applicable for calculating stability radii of NP-hard problems. The last chapter of the thesis focuses on deriving innovative methods based on interactive optimization approach for solving multicriteria combinatorial optimization problems. The key idea of the proposed approach is to utilize a parameterized achievement scalarizing function for solution calculation and to direct interactive procedure by changing weighting coefficients of this function. In order to illustrate the introduced ideas a decision making process is simulated for three objective median location problem. The concepts, models, and ideas collected and analyzed in this thesis create a good and relevant grounds for developing more complicated and integrated models of postoptimal analysis and solving the most computationally challenging problems related to it.
Resumo:
Almost every problem of design, planning and management in the technical and organizational systems has several conflicting goals or interests. Nowadays, multicriteria decision models represent a rapidly developing area of operation research. While solving practical optimization problems, it is necessary to take into account various kinds of uncertainty due to lack of data, inadequacy of mathematical models to real-time processes, calculation errors, etc. In practice, this uncertainty usually leads to undesirable outcomes where the solutions are very sensitive to any changes in the input parameters. An example is the investment managing. Stability analysis of multicriteria discrete optimization problems investigates how the found solutions behave in response to changes in the initial data (input parameters). This thesis is devoted to the stability analysis in the problem of selecting investment project portfolios, which are optimized by considering different types of risk and efficiency of the investment projects. The stability analysis is carried out in two approaches: qualitative and quantitative. The qualitative approach describes the behavior of solutions in conditions with small perturbations in the initial data. The stability of solutions is defined in terms of existence a neighborhood in the initial data space. Any perturbed problem from this neighborhood has stability with respect to the set of efficient solutions of the initial problem. The other approach in the stability analysis studies quantitative measures such as stability radius. This approach gives information about the limits of perturbations in the input parameters, which do not lead to changes in the set of efficient solutions. In present thesis several results were obtained including attainable bounds for the stability radii of Pareto optimal and lexicographically optimal portfolios of the investment problem with Savage's, Wald's criteria and criteria of extreme optimism. In addition, special classes of the problem when the stability radii are expressed by the formulae were indicated. Investigations were completed using different combinations of Chebyshev's, Manhattan and Hölder's metrics, which allowed monitoring input parameters perturbations differently.
Harsanyi’s Social Aggregation Theorem : A Multi-Profile Approach with Variable-Population Extensions
Resumo:
This paper provides new versions of Harsanyi’s social aggregation theorem that are formulated in terms of prospects rather than lotteries. Strengthening an earlier result, fixed-population ex-ante utilitarianism is characterized in a multi-profile setting with fixed probabilities. In addition, we extend the social aggregation theorem to social-evaluation problems under uncertainty with a variable population and generalize our approach to uncertain alternatives, which consist of compound vectors of probability distributions and prospects.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Le Problème de Tournées de Véhicules (PTV) est une clé importante pour gérér efficacement des systèmes logistiques, ce qui peut entraîner une amélioration du niveau de satisfaction de la clientèle. Ceci est fait en servant plus de clients dans un temps plus court. En terme général, il implique la planification des tournées d'une flotte de véhicules de capacité donnée basée à un ou plusieurs dépôts. Le but est de livrer ou collecter une certain quantité de marchandises à un ensemble des clients géographiquement dispersés, tout en respectant les contraintes de capacité des véhicules. Le PTV, comme classe de problèmes d'optimisation discrète et de grande complexité, a été étudié par de nombreux au cours des dernières décennies. Étant donné son importance pratique, des chercheurs dans les domaines de l'informatique, de la recherche opérationnelle et du génie industrielle ont mis au point des algorithmes très efficaces, de nature exacte ou heuristique, pour faire face aux différents types du PTV. Toutefois, les approches proposées pour le PTV ont souvent été accusées d'être trop concentrées sur des versions simplistes des problèmes de tournées de véhicules rencontrés dans des applications réelles. Par conséquent, les chercheurs sont récemment tournés vers des variantes du PTV qui auparavant étaient considérées trop difficiles à résoudre. Ces variantes incluent les attributs et les contraintes complexes observés dans les cas réels et fournissent des solutions qui sont exécutables dans la pratique. Ces extensions du PTV s'appellent Problème de Tournées de Véhicules Multi-Attributs (PTVMA). Le but principal de cette thèse est d'étudier les différents aspects pratiques de trois types de problèmes de tournées de véhicules multi-attributs qui seront modélisés dans celle-ci. En plus, puisque pour le PTV, comme pour la plupart des problèmes NP-complets, il est difficile de résoudre des instances de grande taille de façon optimale et dans un temps d'exécution raisonnable, nous nous tournons vers des méthodes approcheés à base d’heuristiques.
Resumo:
L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.