948 resultados para Micro-Raman spectroscopy
Resumo:
Thin films were prepared using glass precursors obtained in the ternary system NaPO(3)-BaF(2)-WO(3) and the binary system NaPO(3)-WO(3) with high concentrations of WO(3) (above 40% molar). Vitreous samples have been used as a target to prepare thin films. Such films were deposited using the electron beam evaporation method onto soda-lime glass substrates. Several structural characterizations were performed by Raman spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES) at the tungsten L(I) and L(III) absorption edges. XANES investigations showed that tungsten atoms are only sixfold coordinated (octahedral WO(6)) and that these films are free of tungstate tetrahedral units (WO(4)). In addition, Raman spectroscopy allowed identifying a break in the linear phosphate chains as the amount of WO(3) increases and the formation of P-O-W bonds in the films network indicating the intermediary behavior of WO(6) octahedra in the film network. Based on XANES data, we suggested a new attribution of several Raman absorption bands which allowed identifying the presence of W-O and W=O terminal bonds and a progressive apparition of W-O-W bridging bonds for the most WO(3) concentrated samples (above 40% molar) attributed to the formation of WO(6) clusters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Transparent glasses were synthesized in the NaPO3-BaF2 WO3 tertiary system and several structural characterizations were performed by X-ray absorption spectroscopy (XANES) at the tungsten L-I and L-III absorption edges and by Raman spectroscopy. Special attention was paid to the coordination state of tungsten atoms in the vitreous network.XANES investigations showed that tungsten atoms are only six-fold coordinated (octahedra WO6) and that these glasses are free of tungstate tetrahedra (WO4).In addition, Raman spectroscopy allowed to identify a break in the linear phosphate chains as the amount of WO3 increases and the formation of P-O-W bonds in the vitreous network indicating the modifier behavior of WO6 octahedra in the glass network. Based on XANES data, we suggested a new attribution of several Raman absorption bands which allowed to identify the presence of W-O- and W=O terminal bonds and a progressive apparition of W-O-W bridging bonds for the most WO3 concentrated samples (≥ 30% molar) due to the formation of WO6 clusters. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
FIR spectroscopy is an alternative way of collecting spectra of many inorganic pigments and corrosion products found on art objects, which is not normally observed in the MIR region. Most FIR spectra are traditionally collected in transmission mode but as a real novelty it is now also possible to record FIR spectra in ATR (Attenuated Total Reflectance) mode. In FIR transmission we employ polyethylene (PE) for preparation of pellets by embedding the sample in PE. Unfortunately, the preparation requires heating of the PE in order to produces at transparent pellet. This will affect compounds with low melting points, especially those with structurally incorporated water. Another option in FIR transmission is the use of thin films. We test the use of polyethylene thin film (PETF), both commercial and laboratory-made PETF. ATR collection of samples is possible in both the MIR and FIR region on solid, powdery or liquid samples. Changing from the MIR to the FIR region is easy as it simply requires the change of detector and beamsplitter (which can be performed within a few minutes). No preparation of the sample is necessary, which is a huge advantage over the PE transmission method. The most obvious difference, when comparing transmission with ATR, is the distortion of band shape (which appears asymmetrical in the lower wavenumber region) and intensity differences. However, the biggest difference can be the shift of strong absorbing bands moving to lower wavenumbers in ATR mode. The sometimes huge band shift necessitates the collection of standard library spectra in both FIR transmission and ATR modes, provided these two methods of collecting are to be employed for analyses of unknown samples. Standard samples of 150 pigment and corrosion compounds are thus collected in both FIR transmission and ATR mode in order to build up a digital library of spectra for comparison with unknown samples. XRD, XRF and Raman spectroscopy assists us in confirming the purity or impurity of our standard samples. 24 didactic test tables, with known pigment and binder painted on the surface of a limestone tablet, are used for testing the established library and different ways of collecting in ATR and transmission mode. In ATR, micro samples are scratched from the surface and examined in both the MIR and FIR region. Additionally, direct surface contact of the didactic tablets with the ATR crystal are tested together with water enhanced surface contact. In FIR transmission we compare the powder from our test tablet on the laboratory PETF and embedded in PE. We also compare the PE pellets collected using a 4x beam condenser, focusing the IR beam area from 8 mm to 2 mm. A few samples collected from a mural painting in a Nepalese temple, corrosion products collected from archaeological Chinese bronze objects and samples from a mural paintings in an Italian abbey, are examined by ATR or transmission spectroscopy.
Resumo:
In this study more than 450 natural sapphire samples (most of basaltic type) collected from 19 different areas were examined. They are from Dak Nong, Dak Lak, Quy Chau, two unknown sources from the north (Vietnam); Bo Ploi, Khao Ploi Waen (Thailand); Ban Huay Sai (Laos); Australia; Shandong (China); Andapa, Antsirabe, Nosibe (Madagascar); Ballapana (Sri Lanka); Brazil; Russia; Colombia; Tansania and Malawi. rnThe samples were studied on internal characteristics, chemical compositions, Raman-, luminescence-, Fourier transform infrared (FTIR)-, and ultraviolet-visible-near infrared (UV-Vis-NIR)- spectroscopy. The internal features of these sapphire samples were observed and identified by gemological microscope, con focal micro Raman and FTIR spectroscopy. The major and minor elements of the samples were determined by electron probe microanalysis (EPMA) and the trace elements by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). rnThe structural spectra of sapphire were investigated by con focal Raman spectroscopy. The FTIR spectroscopy was used to study the vibration modes of OH-groups and also to determine hydrous mineral inclusions in sapphire. The UV-Vis-NIR absorption spectroscopy was used to analyze the cause of sapphire color. rnNatural sapphires contain many types of mineral inclusions. Typically, they are iron-containing inclusions like goethite, ilmenite, hematite, magnetite or silicate minerals commonly feldspar, and often observed in sapphires from Asia countries, like Dak Nong, Dak Lak in the south of Vietnam, Ban Huay Sai (Laos), Khao Ploi Waen and Bo Ploi (Thailand) or Shandong (China). Meanwhile, CO2-diaspore inclusions are normally found in sapphires from Tansania, Colombia, or the north of Vietnam like Quy Chau. rnIron is the most dominant element in sapphire, up to 1.95 wt.% Fe2O3 measured by EPMA and it affects spectral characteristics of sapphire.rnThe Raman spectra of sapphire contain seven peaks (2A1g + 5Eg). Two peaks at about 418.3 cm-1 and 577.7 cm-1 are influenced by high iron content. These two peaks shift towards smaller wavenumbers corresponding to increasing iron content. This shift is showed by two equations y(418.3)=418.29-0.53x andy(577.7)=577.96-0.75x, in which y is peak position (cm-1) and x is Fe2O3 content (wt.%). By exploiting two these equations one can estimate the Fe2O3 contents of sapphire or corundum by identifying the respective Raman peak positions. Determining the Fe2O3 content in sapphire can help to distinguish sapphires from different origins, e.g. magmatic and metamorphic sapphire. rnThe luminescence of sapphire is characterized by two R-lines: R1 at about 694 nm and R2 at about 692 nm. This characteristic is also influenced by high iron content. The peak positions of two R-lines shift towards to smaller wavelengths corresponding to increasing of iron content. This correlation is showed by two equations y(R_2 )=692.86-0.049x and y(R_1 )=694.29-0.047x, in which y is peak position (nm) of respective R-lines and x is Fe2O3 content (wt.%). Two these equations can be applied to estimate the Fe2O3 content of sapphire and help to separate sapphires from different origins. The luminescence is also applied for determination of the remnant pressure or stress around inclusions in Cr3+-containing corundum by calibrating a 0-pressure position in experimental techniques.rnThe infrared spectra show the presence of vibrations originating from OH-groups and hydrous mineral inclusions in the range of 2500-4000 cm-1. Iron has also an effect upon the main and strongest peak at about 3310 cm-1. The 3310 cm-1 peak is shifted to higher wavenumber when iron content increases. This relationship is expressed by the equation y(3310)=0.92x+3309.17, in which y is peak position of the 3310 cm-1 and x is Fe2O3 content (wt.%). Similar to the obtained results in Raman and luminescence spectra, this expression can be used to estimate the Fe2O3 content and separate sapphires from different origins. rnThe UV-Vis-NIR absorption spectra point out the strong and sharp peaks at about 377, 387, and 450 nm related to dispersed Fe3+, a broad band around 557 and 600 nm related to intervalence charge transfer (IVCT) Fe2+/Ti4+, and a broader band around 863 nm related to IVCT of Fe2+/Fe3+. rnGenerally, sapphires from different localities were completely investigated on internal features, chemical compounds, and solid spectral characteristics. The results in each part contribute for identifying the iron content and separate sapphires from different localities order origins. rn
Resumo:
Microstructure manipulation is a fundamental process to the study of biology and medicine, as well as to advance micro- and nano-system applications. Manipulation of microstructures has been achieved through various microgripper devices developed recently, which lead to advances in micromachine assembly, and single cell manipulation, among others. Only two kinds of integrated feedback have been demonstrated so far, force sensing and optical binary feedback. As a result, the physical, mechanical, optical, and chemical information about the microstructure under study must be extracted from macroscopic instrumentation, such as confocal fluorescence microscopy and Raman spectroscopy. In this research work, novel Micro-Opto-Electro-Mechanical-System (MOEMS) microgrippers are presented. These devices utilize flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection, or fluorescence. The microgrippers require external actuation which was accomplished by two methods: initially with a micrometer screw, and later with a piezoelectric actuator. Thanks to a novel actuation mechanism, the "fishbone", the gripping facets remain parallel within 1 degree. The design, simulation, fabrication, and characterization are systematically presented. The devices mechanical operation was verified by means of 3D finite element analysis simulations. Also, the optical performance and losses were simulated by the 3D-to-2D effective index (finite difference time domain FDTD) method as well as 3D Beam Propagation Method (3D-BPM). The microgrippers were designed to manipulate structures from submicron dimensions up to approximately 100 μm. The devices were implemented in SU-8 due to its suitable optical and mechanical properties. This work demonstrates two practical applications: the manipulation of single SKOV-3 human ovarian carcinoma cells, and the detection and identification of microparts tagged with a fluorescent "barcode" implemented with quantum dots. The novel devices presented open up new possibilities in the field of micromanipulation at the microscale, scalable to the nano-domain.
Resumo:
Microstructure manipulation is a fundamental process to the study of biology and medicine, as well as to advance micro- and nano-system applications. Manipulation of microstructures has been achieved through various microgripper devices developed recently, which lead to advances in micromachine assembly, and single cell manipulation, among others. Only two kinds of integrated feedback have been demonstrated so far, force sensing and optical binary feedback. As a result, the physical, mechanical, optical, and chemical information about the microstructure under study must be extracted from macroscopic instrumentation, such as confocal fluorescence microscopy and Raman spectroscopy. In this research work, novel Micro-Opto-Electro-Mechanical-System (MOEMS) microgrippers are presented. These devices utilize flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection, or fluorescence. The microgrippers require external actuation which was accomplished by two methods: initially with a micrometer screw, and later with a piezoelectric actuator. Thanks to a novel actuation mechanism, the “fishbone”, the gripping facets remain parallel within 1 degree. The design, simulation, fabrication, and characterization are systematically presented. The devices mechanical operation was verified by means of 3D finite element analysis simulations. Also, the optical performance and losses were simulated by the 3D-to-2D effective index (finite difference time domain FDTD) method as well as 3D Beam Propagation Method (3D-BPM). The microgrippers were designed to manipulate structures from submicron dimensions up to approximately 100 µm. The devices were implemented in SU-8 due to its suitable optical and mechanical properties. This work demonstrates two practical applications: the manipulation of single SKOV-3 human ovarian carcinoma cells, and the detection and identification of microparts tagged with a fluorescent “barcode” implemented with quantum dots. The novel devices presented open up new possibilities in the field of micromanipulation at the microscale, scalable to the nano-domain.
Resumo:
Raman spectroscopy of formamide-intercalated kaolinites treated using controlled-rate thermal analysis technology (CRTA), allowing the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites, is reported. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites, which display a combination of both intercalated and adsorbed formamide. An intense band is observed at 3629 cm-1, attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm-1, assigned to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl-stretching band of the inner hydroxyl is observed at 3621 cm-1 in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. Significant differences are observed in the CO stretching region between the adsorbed and intercalated formamide.
Resumo:
The thermal decomposition of natural ammonium oxalate known as oxammite has been studied using a combination of high resolution thermogravimetry coupled to an evolved gas mass spectrometer and Raman spectroscopy coupled to a thermal stage. Three mass loss steps were found at 57, 175 and 188°C attributed to dehydration, ammonia evolution and carbon dioxide evolution respectively. Raman spectroscopy shows two bands at 3235 and 3030 cm-1 attributed to the OH stretching vibrations and three bands at 2995, 2900 and 2879 cm-1, attributed to the NH vibrational modes. The thermal degradation of oxammite may be followed by the loss of intensity of these bands. No intensity remains in the OH stretching bands at 100°C and the NH stretching bands show no intensity at 200°C. Multiple CO symmetric stretching bands are observed at 1473, 1454, 1447 and 1431cm-1, suggesting that the mineral oxammite is composed of a mixture of chemicals including ammonium oxalate dihydrate, ammonium oxalate monohydrate and anhydrous ammonium oxalate.
Resumo:
Raman spectra were recorded in the range 400–1800 cm−1 for a series of 15 mixed \[tetrakis(4-tert-butylphenyl)porphyrinato](2,3-naphthalocyaninato) rare earth double-deckers M(TBPP)(Nc) (M = Y; La–Lu except Pm) using laser excitation at 632.8 and 785 nm. Comparisons with bis(naphthalocyaninato) rare earth counterparts reveal that the vibrations of the metallonaphthalocyanine M(Nc) fragment dominate the Raman features of M(TBPP)(Nc). When excited with radiation of 632.8 nm, the most intense vibration appears at about 1595 cm−1, due to the naphthalene stretching. These complexes exhibit the marker Raman band for Nc•− as a medium-intense band in the range 1496–1507 cm−1, attributed to the coupling of pyrrole and aza stretching, while the marker Raman band of Nc2− in intermediate-valence Ce(TBPP)(Nc) appears as a strong band at 1493 cm−1 and is due to the isoindole stretchings. By contrast, when excited with radiation of 785 nm that is in close resonance with the main Q absorption band of the naphthalocyanine ligand, the ring radial vibrations at ca 680 and 735 cm−1 for MIII(TBPP)(Nc) are selectively intensified and are the most intense bands. For the cerium double-decker, the most intense vibration also acting as the marker Raman band of Nc2− appears at 1497 cm−1 with contributions from both pyrrole CC and aza CN stretches. The same vibrational modes show weak to medium intensity scattering at 1506–1509 cm−1 for MIII(TBPP)(Nc) and this is the marker Raman band of Nc•− when thus excited. The scatterings due to the Nc breathings, ring radial vibration, aza group stretchings, naphthalene stretchings, benzoisoindole stretchings and the coupling of pyrrole CC and aza CN stretchings in MIII(TBPP)(Nc) are all slightly blue shifted along with the decrease in rare earth ionic radius, confirming the effects of increased ring–ring interactions on the Raman characteristics of naphthalocyanine in the mixed ring double-deckers.
Resumo:
Raman spectroscopy has been used to study a selection of vivianites from different origins. A band is identified at around 3480 cm-1 whose intensity is sample dependent. The band is attributed to the stretching vibration of Fe3+ OH units which are formed through the autooxidation of the vivianite minerals either by self-oxidation or by photocatalytic oxidation according to the reaction: (Fe2+)3(PO4)2·8H2O + 1/2O2 (Fe2+)3– x(Fe3+)x(PO4)2(OH)x·(8–x)H2O in which some of the water of crystallization is converted to hydroxyl anions. Complexity of the OH stretching region through the overlap of broad bands is reflected in the water HOH deformation modes at 1660 cm–1. Using the infrared bands at 3281, 3105 and 3025 cm–1, hydrogen bond distances of 2.734(5), 2.675(2) and 2.655(2) Å are calculated. Vivianites are characterised by an intense band at 950 cm–1 assigned to the PO4 symmetric stretching vibration. Low Raman intensity bands are observed at ~1077, ~1050, 1015 and ~ 985 cm–1 assigned to the phosphate PO4 antisymmetric stretching vibrations. Multiple antisymmetric stretching vibrations are due to the reduced tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Two bands are observed at ~ 423 and ~ 456 cm–1 assigned to the2bending modes. For the vivianites four bands are observed at ~ 584, ~ 571, ~ 545 and ~ 525 cm–1 assigned to the 4modes of vivianite.
Resumo:
Thermal transformations of natural calcium oxalate dihydrate known in mineralogy as weddellite have been undertaken using a combination of Raman microscopy and infrared emission spectroscopy. The vibrational spectroscopic data was complimented with high resolution thermogravimetric analysis combined with evolved gas mass spectrometry. TG–MS identified three mass loss steps at 114, 422 and 592 °C. In the first mass loss step water is evolved only, in the second and third steps carbon dioxide is evolved. The combination of Raman microscopy and a thermal stage clearly identifies the changes in the molecular structure with thermal treatment. Weddellite is the phase in the temperature range up to the pre-dehydration temperature of 97 °C. At this temperature, the phase formed is whewellite (calcium oxalate monohydrate) and above 114 °C the phase is the anhydrous calcium oxalate. Above 422 °C, calcium carbonate is formed. Infrared emission spectroscopy shows that this mineral decomposes at around 650 °C. Changes in the position and intensity of the C=O and C---C stretching vibrations in the Raman spectra indicate the temperature range at which these phase changes occur.
Resumo:
The mineral xocomecatlite is a hydroxy metatellurate mineral with Te6+O4 units. Tellurates may be subdivided according to their formula into three types of tellurate minerals: type (a) (AB)m(TeO4)pZq, type (b) (AB)m(TeO6).xH2O and (c) compound tellurates in which a second anion including the tellurite anion, is involved. The mineral Xocomecatlite is an example of the first type. Raman bands for xocomecatlite at 710, 763 and 796 cm-1 and 600 and 680 cm-1 are attributed to the ν1 (TeO4)2- symmetric and ν3 antisymmetric stretching mode. Raman bands observed at 2867 and 2926 cm-1 are assigned to TeOH stretching vibrations and enable estimation of the hydrogen bond distances of 2.622 Å (2867 cm-1), 2.634 Å (2926 cm-1) involving these OH units. The hydrogen bond distances are very short implying that they are necessary for the stability of the mineral.