733 resultados para Mg alloys
Resumo:
A Monte Carlo simulation study of the vacancy-assisted domain growth in asymmetric binary alloys is presented. The system is modeled using a three-state ABV Hamiltonian which includes an asymmetry term. Our simulated system is a stoichiometric two-dimensional binary alloy with a single vacancy which evolves according to the vacancy-atom exchange mechanism. We obtain that, compared to the symmetric case, the ordering process slows down dramatically. Concerning the asymptotic behavior it is algebraic and characterized by the Allen-Cahn growth exponent x51/2. The late stages of the evolution are preceded by a transient regime strongly affected by both the temperature and the degree of asymmetry of the alloy. The results are discussed and compared to those obtained for the symmetric case.
Resumo:
This article describes the combination of low- and high-pressure flow systems for the determination of Magnesium, Calcium and Strontium by flame atomic absorption spectrometry (FAAS). In the low-pressure system a short C-18 RP column (length 0,5 cm) was utilized for the preconcentration/matrix separation step, xylenol orange was used as chelating agent and tetrabutylamonium acetate for ion pair formation. The hydraulic high pressure nebulization (HHPN) was used for sample transport and sample introduction in the high pressure system. The repeatabilities and detection limits for Mg, Ca and Sr were determined and compared with those obtained by pneumatic nebulization (PN). The results show that the detection limits obtained using the HHPN for Mg, Ca and Sr are between 1.5 to 2 times better than those obtained by PN when the signal transient was measured in area. The system presented a sampling frequency of 130 h-1 for direct determination of Mg, Ca or Sr in samples of saturated sodium chloride used in the production of chlorine and sodium hydroxide.
Resumo:
This research was developed by considering that the solid waste produced in the process of pig iron production represents the loss of raw materials and the increase in environmental problem. The charcoal based mini blast-furnace off gases dust named CHARCOK was collected from SIDERPA ¾ Siderúrgica Paulino Ltda, located in Sete Lagoas, Minas Gerais. The Charcok was characterized and classified according to ABNT (Associação Brasileira de Normas Técnicas) standard. The results showed that the Charcok should be classified as Class I Wastes ¾ "Hazard Wastes" because of its high concentration of phenols (54.5mg C6H5OH/kg). The Charcok had high concentration of iron and charcoal which can be used as energy source.
Resumo:
Rosin is a natural product from pine forests and it is used as a raw material in resinate syntheses. Resinates are polyvalent metal salts of rosin acids and especially Ca- and Ca/Mg- resinates find wide application in the printing ink industry. In this thesis, analytical methods were applied to increase general knowledge of resinate chemistry and the reaction kinetics was studied in order to model the non linear solution viscosity increase during resinate syntheses by the fusion method. Solution viscosity in toluene is an important quality factor for resinates to be used in printing inks. The concept of critical resinate concentration, c crit, was introduced to define an abrupt change in viscosity dependence on resinate concentration in the solution. The concept was then used to explain the non-inear solution viscosity increase during resinate syntheses. A semi empirical model with two estimated parameters was derived for the viscosity increase on the basis of apparent reaction kinetics. The model was used to control the viscosity and to predict the total reaction time of the resinate process. The kinetic data from the complex reaction media was obtained by acid value titration and by FTIR spectroscopic analyses using a conventional calibration method to measure the resinate concentration and the concentration of free rosin acids. A multivariate calibration method was successfully applied to make partial least square (PLS) models for monitoring acid value and solution viscosity in both mid-infrared (MIR) and near infrared (NIR) regions during the syntheses. The calibration models can be used for on line resinate process monitoring. In kinetic studies, two main reaction steps were observed during the syntheses. First a fast irreversible resination reaction occurs at 235 °C and then a slow thermal decarboxylation of rosin acids starts to take place at 265 °C. Rosin oil is formed during the decarboxylation reaction step causing significant mass loss as the rosin oil evaporates from the system while the viscosity increases to the target level. The mass balance of the syntheses was determined based on the resinate concentration increase during the decarboxylation reaction step. A mechanistic study of the decarboxylation reaction was based on the observation that resinate molecules are partly solvated by rosin acids during the syntheses. Different decarboxylation mechanisms were proposed for the free and solvating rosin acids. The deduced kinetic model supported the analytical data of the syntheses in a wide resinate concentration region, over a wide range of viscosity values and at different reaction temperatures. In addition, the application of the kinetic model to the modified resinate syntheses gave a good fit. A novel synthesis method with the addition of decarboxylated rosin (i.e. rosin oil) to the reaction mixture was introduced. The conversion of rosin acid to resinate was increased to the level necessary to obtain the target viscosity for the product at 235 °C. Due to a lower reaction temperature than in traditional fusion synthesis at 265 °C, thermal decarboxylation is avoided. As a consequence, the mass yield of the resinate syntheses can be increased from ca. 70% to almost 100% by recycling the added rosin oil.
Resumo:
The Mössbauer analysis along with the structural Rietveld refinement based on powder X-ray data for the magnetic fraction (saturation magnetization, sigma = 19 J T-1 kg-1) separated from a tuffite material from Alto Paranaíba, state of Minas Gerais, Brazil, reveal that a (Ti, Mg)-rich maghemite (deduced sigma = 17 J T-1 kg-1) and, for the first time observed in this lithodomain, magnesioferrite (characteristic sigma = 21 J T-1 kg-1) respond for the magnetization of the rock material. Consistent models for the ionic distribution in these iron-rich spinel structures are proposed.
Resumo:
Solid phase extraction (SPE) in C18 disks has been optimized and validated for extraction of 5 organophosphorus (OP) pesticides in water. Extraction has been followed by separation and detection by gas chromatography/flame photometry. Excellent linearity was obtained for all compounds (r greater than 0.99), with CVs between 1.0-6.9%, recoveries between 73-95% and quantification limits between 2.5-5.0 µg L-1. Samples from Furnas dam were analyzed monthly during one year and 10% showed OP pesticide residues.
Resumo:
The study of price risk management concerning high grade steel alloys and their components was conducted. This study was focused in metal commodities, of which nickel, chrome and molybdenum were in a central role. Also possible hedging instruments and strategies for referred metals were studied. In the literature part main themes are price formation of Ni, Cr and Mo, the functioning of metal exchanges and main hedging instruments for metal commodities. This section also covers how micro and macro variables may affect metal prices from the viewpoint of short as well as longer time period. The experimental part consists of three sections. In the first part, multiple regression model with seven explanatory variables was constructed to describe price behavior of nickel. Results were compared after this with information created with comparable simple regression model. Additionally, long time mean price reversion of nickel was studied. In the second part, theoretical price of CF8M alloy was studied by using nickel, ferro-chrome and ferro-molybdenum as explanatory variables. In the last section, cross hedging possibilities for illiquid FeCr -metal was studied with five LME futures. Also this section covers new information concerning possible forthcoming molybdenum future contracts as well. The results of this study confirm, that linear regression models which are based on the assumption of market rationality, are not able to reliably describe price development of metals at issue. Models fulfilling assumptions for linear regression may though include useful information of statistical significant variables which have effect on metal prices. According to the experimental part, short futures were found to incorporate the most accurate information concerning the price movements in the future. However, not even 3M futures were able to predict turning point in the market before the faced slump. Cross hedging seemed to be very doubtful risk management strategy for illiquid metals, because correlations coefficients were found to be very sensitive for the chosen time span.
Resumo:
The concentration and thermodesorption speciation of mercury in sediments from four different Iron Quadrangle sites impacted by gold mining activity were determined. The mercury content of some samples was considerably high (ranging from 0.04 to 1.1 µg g-1). Only Hg2+ was found and it was preferably distributed in the silt/clay fraction in all samples. Cluster analysis showed that mercury and manganese can be associated. The occurrence of cinnabar in this region as another mercury source was also discussed, corroborating earlier works showing the importance of natural mercury in the geochemical cycle of the metal in this region.
Resumo:
Vanadium oxide supported on hydrotalcite-type precursors was studied in the decomposition of isopropanol. Hydrotalcite-type compounds with different y = Mg+2/Al+3 ratios were synthesized by the method of coprecipitating nitrates of Mg+2 and Al+3 cations with K2CO3 as precipitant. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene.
Resumo:
The present research highlights the macronutrient abundance in the sediments of beaches and cliffs and cultivates in the river Purus and flowing, southwest of Amazon. The concentrations found in leaves and bean seeds and corn leaves reflect the mineralogical and chemical nature of those rich sediments in K2O and Na2O, which are formed by smectite, illite and K-feldspar. The factors of transfer of the elements in the corn leaves and bean (Ca>K>Na) and bean seeds (Na>K>Ca) demonstrate that the nutrient needs of the cultivate were found appropriately in the sediments (soils) of the beaches and cliffs.
Resumo:
Magnetic soils forming on tuffite of the region of Alto Paranaíba, Minas Gerais, Brazil, usually contain iron-rich spinels exceptionally rich in magnesium and titanium. In this work, samples of the magnetically separated portion from the sand fraction of a Brunizém (Chernossolo) and from its mother-rock material were analyzed with synchrotron X-ray diffraction and 57Fe-Mössbauer spectroscopy. Magnesioferite (MgFe2O4) and maghemite (its pure non-stoichiometric spinel structure, Fe8/3 ⊕ 1/3 O4, where ⊕ = cation vacancy, corresponds to γFe2O3) were the magnetic iron oxides so identified. Basing on these data, a consistent chemical-mineralogical model is proposed for the main transformation steps involving these iron oxides in the pedosystem, starting on magnesioferrite to finally render hematite (αFe2O3), passing through maghemite as an intermediate specie.
Resumo:
This work proposes an analytical procedure for direct determination of calcium, magnesium, manganese and zinc in buffalo milk by flame atomic absorption spectrometry (FAAS). Samples were diluted with a solution containing 10% (v/v) of water-soluble tertiary amines (CFA-C) at pH 8. For comparison, buffalo milk samples were digested with HNO3 and H2O2. According to a paired t-test, the results obtained in the determination of Ca, Mg, Mn and Zn in digested samples and in 10% (v/v) CFA-C medium were in agreement at a 95% confidence level. The developed procedure is simple, rapid, decrease the possibility of contamination and can be applied for the routine determination of Ca, Mg, Mn and Zn in buffalo milk samples without any difficulty caused by matrix constituents, such as fat content, and particle size distribution in the milk emulsion.
Resumo:
The catalytic performance of Mg,Al-mixed oxides (MO20, MO25 and MO33) derived from hydrotalcites was evaluated in the Knoevenagel reaction between benzaldehyde and phenylsulfonylacetonitrile at 373 and 383 K. The best results were obtained for the sample MO20 that presented the highest basic sites density and external area and the smallest crystallite sizes. The relative amount of basic sites with weak to intermediate strength also played an important role on catalytic performance. By increasing the catalyst content from 1 to 5 wt.% at 383 K, a complete conversion of the reactants is attained, producing α-phenylsulfonylcinnamonitrile with a selectivity of 100%.
Resumo:
A spectrophotometric method was proposed for Ni(II) determination in alloys using a dopa-semiquinone (L-1) to form [Ni(II)(L1-)3]1-, ε = 9.3 x 10³ L mol-1 cm-1. The optimal conditions for the determination were: wavelength 590 nm, temperature 25 °C, reaction time 45 min and pH 7.5. The Beer's law was obeyed for nickel from 3.33 x 10-5 to 1.78 x 10-4 mol L-1. The method was applied to complex samples, such as inox, nickel-titanium and cobalt-chromium alloys. A study of the potential interferents revealed that Mn was the major interferent. The limit of detection and quantification were 2.88 x 10-5 mol L-1 and 3.06 x 10-5 mol L-1, respectively.
Resumo:
The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.