1000 resultados para MICELLAR MEDIUM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: 2-ethylhexylphosphonic acid mono-(2-ethylhexyl) ester (HEHEHP, H(2)A(2)) has been applied extensively to the extraction of rare earths. However, there are some limitations to its further utilization and the synergistic extraction of rare earths with mixtures of HEHEHP and another extractant has attracted much attention. Organic carboxylic acids are also a type of extractant employed for the extraction of rare earths, e.g. naphthenic acid has been widely used to separate yttrium from rare earths. Compared with naphthenic acid, sec-nonylphenoxy acetic acid (CA100, H2B2) has many advantages such as stable composition, low solubility, and strong acidity in the aqueous phase. In the present study, the extraction of rare earths with mixtures of HEHEHP and CA100 has been investigated. The separation of the rare earth elements is also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraction of rare earth elements from chloride medium by mixtures of sec-nonylphenoxy acetic acid (CA100) with bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex301) or bis(2,4,4-trimethylpentyl) monothiophosphinic acid (Cyanex302) in n-heptane has been studied. The synergistic enhancement of the extraction of lanthanum (III) by mixtures of CA100 with Cyanex301 has been investigated using the methods of slope analysis and constant mole. The extracted complex of lanthanum (III) is determined. The logarithm of the equilibrium constant is calculated as - 1.41. The formation constants and the thermodynamic functions, Delta H, Delta G, and Delta S have also been determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraction of rare earth elements from chloride medium by mixtures of sec-nonylphenoxy acetic acid (CA100) with bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex301) or bis(2,4,4-trimethylpentyl) monothiophosphinic acid (Cyanex302) in n-heptane has been studied. The synergistic enhancement of the extraction of lanthanum (III) by mixtures of CA100 with Cyanex301 has been investigated using the methods of slope analysis and constant mole. The extracted complex of lanthanum (III) is determined. The logarithm of the equilibrium constant is calculated as - 1.41. The formation constants and the thermodynamic functions, Delta H, Delta G, and Delta S have also been determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White-light emission is achieved from a single layer of diblock copolymer micelles containing green- and red-light-emitting dyes in the separate micellar cores and blue-light-emitting polymer around their periphery, in which fluorescence resonance energy transfer between fluorophores is inhibited due to micelle isolation, resulting in simultaneous emission of these three species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Thermodynamic studies on Ce(IV) extraction with primary amine N1923 demonstrate that primary amine N1923 is an excellent extractant for separation of Ce(IV) from Re(III). In order to clarify the mechanism of extraction and to optimize the parameters in practical extraction systems used in the rare earth industry, the extraction kinetics was investigated using a constant interfacial area cell with laminar flow in the present work.RESULTS: The data indicate that the rate constant (k(ao).) becomes constant when stirring speed exceeds 250 rpm. The apparent forward extraction rate is calculated to be 10(-1.70). The activation energy (E.) was calculated to be 20.5 kJ/mol from the slope of log kao against 1000/T. The minimum bulk concentration of the extractant necessary to saturate the interface (C-min) is lower than 10(-5) mol L-1.CONCLUSION: Studies of interfacial tension and the effects of stirring rate and specific interfacial area on the extraction rate show that the extraction rate is kinetically controlled, and a mass transfer model has been proposed. The rate equation has been obtained as: -d[Ce(IV)]/dt = 10(-1.70)[Ce(IV)] [(RNH3)(2)SO4](1.376). The rate-controlling step has been evaluated from analysis of the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraction behavior of lanthanides and yttrium usinsg CYANEX 925 (mixture of branched chain alkylated phosphine oxides) in n-heptane from nitrate medium has been studied. The effects of aqueous phase ionic strength, CYANEX 925 concentration in the organic phase, and temperature on Sm3+, Nd3+ and Y3+ extraction have been investigated. The extractability of the lanthanides and yttrium increases with increasing nitrate concentration, as well as with increasing CYANEX 925 concentration. An extraction mechanism is proposed based on slope analysis. Furthermore, the infra-red spectra of CYANEX 925 saturated with lanthanides are employed to provide evidence of the composition of the complex. The relationship between the logarithm of the distribution ratio and lanthanide atomic number is also discussed which indicates that yttrium can be separated from fight lanthanides. In addition separation of the light and heavy lanthanide groups is also possible using CYANEX 925. From the temperature dependence data, the thermodynamic parameters values (Delta H, Delta S and Delta G) are calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraction kinetics of Sc, Y, La and Gd(III) from the hydrochloric acid medium using Cyanex 302 (hereafter HL) in heptane solution have been measured by the constant interfacial cell with laminar flow. Reaction regions are explored at liquid-liquid interface. Extraction regimes are deduced to be diffusion-controlled for Sc(Ill) and mixed controlled for Y, La and Gd(Ill). Extraction mechanisms are discussed according to the dimeric model of Cyanex 302 in non-polar solution. From the temperature dependence of rate measurement, the values of E-a, Delta H-+/-, Delta S-+/- and Delta G(300)(+/-) are calculated and it is found that the absolute values of these parameters keep crescent trend for Sc, Y, La and Gd(III). At the same time, it is found that it can easily achieve the mutual separation among the Sc, Y and La(III) with kinetics extraction methods.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel room temperature ionic liquid (RTIL) has been prepared containing a cyclic hexaalkylguanidinium cation. The selective oxidation of a series of substituted benzyl alcohols has been carried out in it, with sodium hypochlorite as the oxidant. The RTIL acts as both phase transfer catalyst (PTC) and solvent. The ionic liquid could be recycled after extraction of the benzaldehyde product with ether.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synergistic effect of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 (HPMBP, HA) and di-(2ethylhexyl)-2-ethylhexylphosphonate (DEHEHP, B) in the extraction of rare earths (RE) from chloride solutions has been investigated. Under the experimental conditions used, there was no detectable extraction when DEHEHP was used as a single extractant while the amount of RE(III) extracted by HPMBP alone was also low. But mixtures of the two extractants at a certain ratio had very high extractability for all the RE (III). For example, the synergistic enhancement coefficient was calculated to be 9.35 for Y3+, and taking Yb3+ and Y3+ as examples, RE3+ is extracted as RE(OH)A(2).B. The stoichiometry, extraction constants and thermodynamic functions such as Gibbs free energy change Delta G (-17.06kJmol(-1)), enthalpy change Delta H (-35.08kjmol(-1)) and entropy change Delta S (-60.47JK(-1)mol(-1)) for Y3+ at 298 K were determined. The separation factors (SF) for adjacent pairs of rare earths were calculated. Studies show that the binary extraction system not only enhances the extraction efficiency of RE(III) but also improves the selectivity, especially between La(III) and the other rare earth elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of the extraction kinetics of cerium(IV) into n-heptane solutions of di(2-ethylhexyl)-2-ethylhexyl phosphonate DEHEHP from HNO3-HF solutions have been carried out using a constant interfacial cell with laminar flow. The experimental hydrodynamic conditions were chosen so that the contribution of diffusion to the measured rate of reaction was minimized. The data were analyzed in terms of pseudo-first order constants. The effects of the stirring rate, specific interfacial area, and temperature on the extraction rate showed that the most probable reaction zone is in the aqueous homogeneous phase. The results were compared with those of the system without HF. It was concluded that the presence of HF decreases the extraction rate of cerium. The addition of HF increases the activation energy for the forward reaction from 21.2 to 55.3 kJ/mol and for the reverse process from 57.9 to 79.0 kJ/mol. According to the experimental data correlated as a function of the concentration of the relevant species involved in the extraction reaction, the corresponding rate equation was deduced as follows:-d[Ce]/dt = k[Ce] center dot B-0.62 center dot HF-0.58 center dot [NO3-](0.57)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraction of trivalent rare earths ( RE) from nitrate solutions with di-(2-ethylhexyl) 2-ethylhexyl phosphonate (DEHEHP, B) and synergistic extraction combined with 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5 (HPMBP, HA) were investigated. The extraction distribution ratios demonstrate a distinct "tetra effect," and Y lies between Tb and Dy when DEHEHP is used as a single extractant for RE. According to the corresponding separation factors (SF12) for adjacent pairs of rare earths, it could be concluded that DEHEHP could be employed for the separation of La from the other rare earths, and Y from light rare earths. The present work has also found that mixtures of HPMBP and DEHEHP have an evident synergistic effect for RE(III). Taking Y( III) as an example, a possible synergistic extraction mechanism is proposed. The enhancement of extraction in the binary system can be explained due to the species Y(NO3) (.) A(2) (.) HA (.) B formed. The synergistic enhancement coefficients ( R), extraction constants, formation constants and thermodynamic functions of the reaction were calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraction and stripping of ytterbium (III) from sulfuric acid medium using Cyanex 923 in heptane solution was investigated. The effects of extractant concentration, pH and sulfate ion as well as stripping agents, acidity and temperature on the extraction and stripping were studied. The equilibrium constants and thermodynamic parameters, such as Delta H (10.76 kJ(.)mol(-1)), Delta G (-79.26 kJ(.)mol(-1)) and Delta S (292.41 J(.)K(-1.)mol(-1)), were calculated. The extraction mechanism and the complex species extracted were determined by slope analysis and FrIR spectra. Furthermore, it was found that the extraction of Yb (III) from sulfuric acid medium by Cyanex 923 increased with pH, concentration of SO42-, HSO4-, and extractant concentration, and approximately a quantitative extraction of Yb (III) was achieved at an equilibrium pH near 3.0, and the extracted complex was YbSO4(HSO4)(.)2Cyanex923((o)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synergistic effect of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 (HPMBP) and triisobutylphosphine sulphide (TIBPS, B) is investigated in the extraction of lanthanum(III) from chloride solution. Lanthanum(III) is extracted by the mixture as LaCl2.PMBP.B-0.5 instead of La(PMBP)(3).(HPMBP) which is extracted by HPMBP alone. The equilibrium constants and thermodynamic functions such as DeltaG, DeltaH and DeltaS are determined. The extraction of other rare earth ions by mixtures of HPMBP and TIBPS is also studied and the possibility of separating rare earth ions is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of the extraction kinetics of cerium(IV) from H2SO4-HF solutions with Cyanex 923 in n-heptane have been carried out using a constant interfacial area cell with laminar flow. The experimental hydrodynamic conditions were chosen so that the contribution of diffusion to the measured rate of reaction was minimized. The data were analyzed in terms of pseudo-first order constants. The results were compared with those of the system without HF. It was concluded that the addition of HF reduces the activation energy for the forward rate from 46.2 to 36.5 U mol(-1) while it has an opposite effect on the activation energy for the reverse process(the activation energy increased from 23.3 to 90.8 U mol(-1)). Thus, HF can accelerate the rate of cerium(IV) extraction. At the same time, the extraction rate is controlled by a mixed chemical reaction-diffusion rather than by a chemical reaction alone. A rate equation has also been obtained.