976 resultados para Low detection limit
Resumo:
It was found that cinnamic acid can react with potassium permanganate in the acidic medium and produce chemiluminescence, which was greatly enhanced by glyoxal. Under the optimum conditions, the linear range for the determination of cinnamic acid was 1.0×10-8 to 1.0×10-4 mol L-1 with a detection limit of 8.0×10-9 mol L-1, the relative standard deviation was 1.7% for 2.0×10-6 mol L-1 cinnamic acid solution in nine repeated measurements. This method was found to be novel0simple0fast and sensitive, it was successfully applied to the determination of cinnamic acid in human urine. Furthermore, the possible reaction mechanism was also discussed.
Resumo:
A flow injection spectrophotometric procedure for the determination of glyphosate in commercial formulations of herbicides is proposed. The determination is based on the reaction of glyphosate and p-dimethylaminocinnamaldehyde, in acid medium, yielding a colored compound (l máx = 495 nm). Under optimal conditions, Beer's law is obeyed in a concentration range 40-640 mg mL-1 with a correlation coefficient of 0.9996. The detection limit was 8.60 mg mL-1 for glyphosate. The method was successfully applied for the determination of glyphosate in commercial formulations of herbicides. Recovery of glyphosate from various commercial samples of herbicides range from 91.0 to 110%.
Resumo:
A spectrophotometric method based on the formation of ion-pair complex between haloperidol and eriochrome black T (EBT) at pH 1.85 has been described. The formed complex was extracted quantitatively into chloroform and measured at 510 nm. Infra red (IR) studies were performed to confirm the formation of ion-pair complex. Beer's law was obeyed in the concentration range of 2.0-9.0 µg mL-1 with molar absorptivity of 2.67 × 10(4) L mol-1 cm-1. The detection limit was found to be 0.18 µg mL-1. Statistical comparison of the results of the proposed method with those of the reference method shows excellent agreement and indicates no significant difference in accuracy and precision.
Resumo:
An optical chemical sensor for the determination of nitrite based on incorporating methyltrioctylammonium chloride as an anionic exchanger on the triacetylcellulose polymer has been reported. The response of the sensor is based on the redox reaction between nitrite in aqueous solution and iodide adsorbed on sensing membrane using anion exchange phenomena. The sensing membrane reversibly responses to nitrite ion over the range of 6.52×10-6 - 8.70×10-5 mol L-1 with a detection limit of 6.05×10-7 mol L-1 (0.03 µg mL-1) and response time of 6 min. The relative standard deviation for eight replicate measurements of 8.70×10-6 and 4.34×10-5 mol L-1 of nitrite was 4.4 and 2.5 %, respectively. The sensor was successfully applied for determination of nitrite in food, saliva and water samples.
Resumo:
A simple and sensitive method has been proposed for the determination of sibutramine-HCl in energy drinks, green tea and pharmaceutical formulations using differential pulse voltammetry performed on a hanging mercury drop electrode. In the chosen experimental condition (Mcllvaine pH 4.0 buffer, 50 mV pulse amplitude and 40 mV s-1 scan velocity), sibutramine-HCl presented a reversible behavior and a peak maximum at -80 mV. Detection limit was 0.4 mg L-1 and the working linear range extended up to 33.3 mg L-1 (r = 0.99). Analysis of real and fortified samples enabled recoveries between 91 and 102%. The electroanalytical method was compared with a HPLC method which indicated it accuracy.
Resumo:
A furan-triazole derivative has been explored as an ionophore for preparation of a highly selective Pr(III) membrane sensor. The proposed sensor exhibits a Nernstian response for Pr(III) activity over a wide concentration range with a detection limit of 5.2×10-8 M. Its response is independent of pH of the solution in the range 3.0-8.8 and offers the advantages of fast response time. To investigate the analytical applicability of the sensor, it was applied successfully as an indicator electrode in potentiometric titration of Pr(III) solution and also in the direct and indirect determination of trace Pr(III) ions in some samples.
Resumo:
A new cloud point extraction (CPE) method was developed for the separation and preconcentration of copper (II) prior to spectrophotometric analysis. For this purpose, 1-(2,4-dimethylphenyl) azonapthalen-2-ol (Sudan II) was used as a chelating agent and the solution pH was adjusted to 10.0 with borate buffer. Polyethylene glycol tert-octylphenyl ether (Triton X-114) was used as an extracting agent in the presence of sodium dodecylsulphate (SDS). After phase separation, based on the cloud point of the mixture, the surfactant-rich phase was diluted with acetone, and the enriched analyte was spectrophotometrically determined at 537 nm. The variables affecting CPE efficiency were optimized. The calibration curve was linear within the range 0.285-20 µg L-1 with a detection limit of 0.085 µg L-1. The method was successfully applied to the quantification of copper in different beverage samples.
Resumo:
A simple and fast method for the determination of nimesulide (NI) using flow injection analysis with multiple-pulse amperometric (FIA-MPA) detection at a boron-doped diamond (BDD) electrode was developed. The method was based mainly on the application of a four-potential waveform, E1(det) = -0.8 V / 30 ms, E2(det) = 0.6 V / 30 ms, E3(det) = -0.4 V / 30 ms and E4(cleaning) = -0.45 V / 300 ms versus Ag/AgCl (3.0 mol L-1 KCl). NI was detected at three different electrode potentials, at which the nitro group undergoes different redox reactions. The proposed method was selective and sensitive (detection limit of 81.0 nmol L-1), and successfully applied for the determination of NI in pharmaceutical formulations, yielding similar results to those obtained by the reference method.
Resumo:
A simple and fast approach for solid phase extraction is herein described, and used to determine trace amounts of Pb2+ and Cu2+ metal ions. The solid phase support is sodium dodecyl sulfate (SDS)-coated γ-alumina modified with bis(2-hydroxy acetophenone)-1,6-hexanediimine (BHAH) ligand. The adsorbed ions were stripped from the solid phase by 6 mL of 4 M nitric acid as eluent. The eluting solution was analyzed by flame atomic absorption spectrometry (FAAS). The sorption recovery of metal ions was investigated with regard to the effects of pH, amount of ligand, γ-alumina and surfactant and the amount and type of eluent. Complexation of BHAH with Pb2+ or Cu2+ ions was examined via spectrophotometry using the HypSpec program. The detection limit for Cu2+ was 7.9 µg L-1 with a relative standard deviation of 1.67%, while that for Pb2+ was 6.4 µg L-1 with a relative standard deviation of 1.64%. A preconcentration factor of 100 was achieved for these ions. The method was successfully applied to determine analyte concentrations in samples of liver, parsley, cabbage, and water.
Resumo:
Due to the inherent limitations of the analytical methods of measurement, environmental exposure data often present observations described as below a certain detection limit, also called left-censored data. Censored data directly interferes in almost all types of statistical analyzes, including descriptive parameters, hypothesis testing, confidence intervals, correlations and regressions. In this work, we investigated the performance of the main classes of methods from major publications available in the literature, considering their advantages and limitations. Some criteria for selecting the best method of dealing with censored data are presented.
Resumo:
A dispersive liquid-liquid microextraction procedure coupled to spectrophotometry is described for the determination of the trace levels of Sudan Blue II. Analytical parameters, such as pH, volume of extraction solvent (carbon tetrachloride), volume of dispersant (ethanol), volume of sample, and extraction time, were optimized. Matrix effects were also investigated. Preconcentration factor was found to be 200. Detection limit and relative standard deviation (RSD) were 0.55 µg L-1 and 3.9%, respectively. The procedure was successfully used for the determination of trace levels of Sudan Blue II in food, ink, antifreeze, and industrial waste-water samples.
Resumo:
An improved method based on reverse flow injection is proposed for determining sulfate concentration in the wet-process of phosphoric acid (WPA). The effect of reagent composition, flow rate, temperature, acid concentration, length of the reaction coil, and linear response range on the flow system is discussed in detail. Optimal conditions are established for determining sulfate in the WPA samples. Baseline drift is avoided by a periodic washing step with EDTA in an alkaline medium. A linear response is observed within a range of 20 - 360 mg L-1, given by the equation A = 0.0020C (mg L-1) + 0.0300, R² = 0.9991. The detection limit of the proposed method for sulfate analysis is 3 mg L-1, and the relative standard deviation (n = 12) of sulfate absorbance peak is less than 1.60%. This method has a rate of up to 29 samples per hour, and the results compare well with those obtained with gravimetric method.
Resumo:
A simple and reliable voltammetric method is presented for the determination of amitriptyline using a boron-doped diamond electrode in 0.1 mol L-1 sulfuric acid solution as the support electrolyte. Under optimized differential pulse voltammetry conditions (modulation time 5 ms, scan rate 70 mV s-1, and pulse amplitude 120 mV), the electrode provides linear responses to amitriptyline in the concentration range 1.05 to 92.60 µmol L-1 and at a detection limit of 0.52 µmol L-1. The proposed method was successfully applied in pharmaceutical formulations, with results similar to those obtained using UV-vis spectrophotometric method as reference (at 95% confidence level), as recommended by the Brazilian Pharmacopoeia.
Resumo:
A simple procedure is described for the determination of scopolamine by square-wave voltammetry using a cathodically pretreated boron-doped diamond electrode. Cyclic voltammetry studies indicate that the oxidation of scopolamine is irreversible at a peak potential of 1.59 V (vs. Ag/AgCl (3.0 mol L-1 KCl)) in a 0.50 mol L-1 sulfuric acid solution. Under optimized conditions, the analytical curve obtained was linear (r = 0.9996) for the scopolamine concentration range of 1.0 to 110 µmol L-1, with a detection limit of 0.84 µmol L-1. The method was successfully applied to the determination of scopolamine in pharmaceutical formulations with minimum sample preparation.
Resumo:
A glassy carbon electrode modified with ruthenium hexacyanoferrate (RuOHCF) was investigated as an electrocatalyst for the detection of procaine with the aim of quantification in pharmaceutical and forensic samples. The RuOHCF films were prepared by electrochemical deposition, and the parameters used in this process (concentration of RuCl3, K3Fe(CN)6, temperature, and number of cyclic voltammograms recorded in the modification step) were carefully optimized. Based on the optimal conditions achieved, the RuOHCF modified electrode allows the determination of procaine at 0.0 V with a detection limit of 11 nmol L-1using square wave voltammetry.