976 resultados para Limeira (SP)
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
A new species of polyclad flatworm from Papua New Guinea is described. It is found symbiotic in the ophiuroid Ophiothrix purpurea von Martens, 1867 (Echinodermata: Ophiuroidea). Apparently it belongs to the taxon Discoplana Bock, 1913 and can be distinguished from the six previously described Discoplana species by its very short ejaculatory duct and a penial papilla covered with a penial sheath, but without any true sclerotised structures such as a stylet or spines. The cladistic analysis of the Discoplana/Euplana species, based on morphological features and including two outgroups, reveals that all species of Discoplana, except D. pacificola, form a monophyletic taxon, that is not a synonym of Euplana Girard, 1893. Therefore the name Discoplana is conserved and the new species will be described as Discoplana malagasensis sp. nov. A key for the Discoplana/Euplana group is provided. In this key the biogeographical distribution and possible synonyms are given.
Resumo:
p.227-231
Resumo:
p.111-117
Resumo:
p.133-139
Resumo:
p.115-126
Resumo:
p.33-37
Resumo:
The secondary structure of the trimeric protein 4-chlorobenzoyl coenzyme A dehalogenase from Arthrobacter sp. strain TM-1, the second of three enzymes involved in the dechlorination of 4-chlorobenzoate to form 4-hydroxybenzoate, has been examined. E(mM) for the enzyme was 12.59. Analysis by circular dichroism spectrometry in the far uv indicated that 4-chlorobenzoyl coenzyme A dehalogenase was composed mostly of alpha-helix (56%) with lesser amounts of random coil (21%), beta-turn (13%) and beta-sheet (9%). These data are in close agreement with a computational prediction of secondary structure from the primary amino acid sequence, which indicated 55.8% alpha-helix, 33.7% random coil and 10.5% beta-sheet; the enzyme is, therefore, similar to the 4-chlorobenzoyl coenzyme A dehalogenase from Pseudomonas sp. CBS-3. The three-dimensional structure, including that of the presumed active site, predicted by computational analysis, is also closely similar to that of the Pseudomonas dehalogenase. Study of the stability and physicochemical properties revealed that at room temperature, the enzyme was stable for 24 h but was completely inactivated by heating to 60 degrees C for 5 min; thereafter by cooling at 1 degrees C min(-1) to 45 degrees C, 20.6% of the activity could be recovered. Mildly acidic (pH 5.2) or alkaline (pH 10.1) conditions caused complete inactivation, but activity was fully recovered on returning the enzyme to pH 7.4. Circular dichroism studies also indicated that secondary structure was little altered by heating to 60 degrees C, or by changing the pH from 7.4 to 6.0 or 9.2. Complete, irreversible destruction of, and maximal decrease in the fluorescence yield of the protein at 330-350 nm were brought about by 4.5 M urea or 1.1 M guanidinium chloride. Evidence was obtained to support the hypothetical three-dimensional model, that residues W140 and W167 are buried in a non-polar environment, whereas W182 appears at or close to the surface of the protein. At least one of the enzymes of the dehalogenase system (the combined 4-chlorobenzoate:CoA ligase, the dehalogenase and 4-hydroxybenzoyl coenzyme A thioesterase) appears to be capable of association with the cell membrane.