884 resultados para Laser refractive surgery


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Patients can experience urinary retention (UR) after Holmium laser enucleation of the prostate (HoLEP) that requires bladder distension during the procedure. The aim of this retrospective study is to identify factors affecting the UR after HoLEP. Materials and Methods 336 patients, which underwent HoLEP for a symptomatic benign prostatic hyperplasia between July 2008 and March 2012, were included in this study. Urethral catheters were routinely removed one or two days after surgery. UR was defined as the need for an indwelling catheter placement following a failure to void after catheter removal. Demographic and clinical parameters were compared between the UR (n = 37) and the non-urinary retention (non-UR; n = 299) groups. Results The mean age of patients was 68.3 (±6.5) years and the mean operative time was 75.3 (±37.4) min. Thirty seven patients (11.0%) experienced a postoperative UR. UR patients voided catheter free an average of 1.9 (±1.7) days after UR. With regard to the causes of UR, 24 (7.1%) and 13 (3.9%) patients experienced a blood clot-related UR and a non-clot related UR respectively. Using multivariate analysis (p<0.05), we found significant differences between the UR and the non-UR groups with regard to a morcellation efficiency (OR 0.701, 95% CI 0.498–0.988) and a bleeding-related complication, such as, a reoperation for bleeding (OR 0.039, 95% CI 0.004–0.383) or a transfusion (OR 0.144, 95% CI 0.027–0.877). Age, history of diabetes, prostate volume, pre-operative post-void residual, bladder contractility index, learning curve, and operative time were not significantly associated with the UR (p>0.05). Conclusions De novo UR after HoLEP was found to be self-limited and it was not related to learning curve, patient age, diabetes, or operative time. Efficient morcellation and careful control of bleeding, which reduces clot formation, decrease the risk of UR after HoLEP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the high-energy flat-top supercontinuum covering the mid-infrared wavelength range of 1.9-2.5 μm as well as electronically tunable femtosecond pulses between 1.98-2.22 μm directly from the thulium-doped fiber laser amplifier. Comparison of experimental results with numerical simulations confirms that both sources employ the same nonlinear optical mechanism - Raman soliton frequency shift occurring inside the Tm-fiber amplifier. To illustrate that, we investigate two versions of the compact diode-pumped SESAM mode-locked femtosecond thulium-doped all-silica-fiber-based laser system providing either broadband supercontinuum or tunable Raman soliton output, depending on the parameters of the system. The first system operates in the Raman soliton regime providing femtosecond pulses tunable between 1.98-2.22 μm. Wide and continuous spectral tunability over 240 nm was realized by changing only the amplifier pump diode current. The second system generates high-energy supercontinuum with the superior spectral flatness of better than 1 dB covering the wavelength range of 1.9-2.5 μm, with the total output energy as high as 0.284 μJ, the average power of 2.1 W at 7.5 MHz repetition rate. We simulate the amplifier operation in the Raman soliton self-frequency shift regime and discuss the role of induced Raman scattering in supercontinuum formation inside the fiber amplifier. We compare this system with a more traditional 1.85-2.53 μm supercontinuum source in the external highly-nonlinear commercial chalcogenide fiber using the Raman soliton MOPA as an excitation source. The reported systems1 can be readily applied to a number of industrial applications in the mid-IR, including sensing, stand-off detection, medical surgery and fine material processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear optics is a broad field of research and technology that encompasses subject matter in the field of Physics, Chemistry, and Engineering. It is the branch of Optics that describes the behavior of light in nonlinear media, that is, media in which the dielectric polarization P responds nonlinearly to the electric field E of the light. This nonlinearity is typically only observed at very high light intensities. This area has applications in all optical and electro optical devices used for communication, optical storage and optical computing. Many nonlinear optical effects have proved to be versatile probes for understanding basic and applied problems. Nonlinear optical devices use nonlinear dependence of refractive index or absorption coefficient on the applied field. These nonlinear optical devices are passive devices and are referred to as intelligent or smart materials owing to the fact that the sensing, processing and activating functions required for optical processes are inherent to them which are otherwise separate in dynamic devices.The large interest in nonlinear optical crystalline materials has been motivated by their potential use in the fabrication of all-optical photonic devices. Transparent crystalline materials can exhibit different kinds of optical nonlinearities which are associated with a nonlinear polarization. The choice of the most suitable crystal material for a given application is often far from trivial; it should involve the consideration of many aspects. A high nonlinearity for frequency conversion of ultra-short pulses does not help if the interaction length is strongly limited by a large group velocity mismatch and the low damage threshold limits the applicable optical intensities. Also, it can be highly desirable to use a crystal material which can be critically phasematched at room temperature. Among the different types of nonlinear crystals, metal halides and tartrates have attracted due to their importance in photonics. Metal halides like lead halides have drawn attention because they exhibit interesting features from the stand point of the electron-lattice interaction .These materials are important for their luminescent properties. Tartrate single crystals show many interesting physical properties such as ferroelectric, piezoelectric, dielectric and optical characteristics. They are used for nonlinear optical devices based on their optical transmission characteristics. Among the several tartrate compounds, Strontium tartrate, Calcium tartrate and Cadmium tartrate have received greater attention on account of their ferroelectric, nonlinear optical and spectral characteristics. The present thesis reports the linear and nonlinear aspects of these crystals and their potential applications in the field of photonics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Indirect revascularization is a therapeutic approach in case of severe angina not suitable for percutaneous or surgical revascularization. Transmyocardial revascularization (TMR) is one of the techniques used for indirect revascularization and it allows to create transmyocardial channels by a laser energy bundle delivered on left ventricular epicardial surface. Benefits of the procedure are related mainly to the angiogenesis caused by inflammation and secondly to the destruction of the nervous fibers of the heart. Patients and method. From September 1996 up to July 1997, 14 patients (9 males – 66.7%, mean age 64.8±7.9 years) underwent TMR. All patients referred angina at rest; Canadian Angina Class was IV in 7 patients (58.3%), III in 5 (41.7%). Before the enrollment, coronarography was routinely performed to find out the feasibility of Coronary Artery Bypass Graft (CABG): 13 patients (91,6%) had coronary arteries lesions not suitable for direct revascularization; this condition was limited only to postero-lateral area in one patient submitted to combined TMR + CABG procedures. Results. Mean discharge time was 3,2±1,3 days after surgery. All patients were discharged in good clinical conditions. Perfusion thallium scintigraphy was performed in 7 patients at a mean follow-up of 4±2 months, showing in all but one an improvement of perfusion defects. Moreover an exercise treadmill improvement was observed in the same patients and all of them are in good clinical conditions, with significantly reduced use of active drugs. Conclusion. Our experience confirms that TMR is a safe and feasible procedure and it offers a therapeutic solution in case of untreatable angina. Moreover, it could be a hybrid approach for patients undergoing CABGs in case of absence of vessels suitable for surgical approach in limited areas of the heart.

Relevância:

20.00% 20.00%

Publicador: