934 resultados para In Vitro Production


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new diruthenium(II,III) complex, of formula [Ru2Cl(ket)(4)], Ruket, containing the non-steroidal anti-inflammatory drug ketoprofen was synthesized and mainly characterized by electrospray ionization mass spectrometry (ESI-MS), UV-Vis-IR electronic spectroscopy and FTIR and Raman vibrational spectroscopies. The four drug-carboxylato bridging ligands stabilize a Ru-2(II,III) mixed valent core in a paddlewheel type structure as confirmed by ESI mass spectra, electronic and vibrational spectroscopies and magnetic measurements. Ruket and the analogous compounds containing ibuprofen, Ruibp, and naproxen, Runpx, were tested for the biological effects in the human colon carcinoma cells HT-29 and Caco-2 expressing high and low levels of COX-2 respectively. All compounds only weakly affected the proliferation of the colorectal cancer cells HT-29 and Caco-2, and similarly only partially inhibited the production/activity of MMP-2 and MMP-9 by HT-29 cells, suggesting that COX-2 inhibition by these drugs can only partially be involved in the pharmacological effects of these derivatives. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cDNA coding for a digestive cathepsin L, denominated Sl-CathL, was isolated from a cDNA library of Sphenophorus levis larvae, representing the most abundant EST (10.49%) responsible for proteolysis in the midgut. The open reading frame of 972 bp encodes a preproenzyme similar to midgut cathepsin L-like enzymes in other coleopterans. Recombinant Sl-CathL was expressed in Pichia pastoris, with molecular mass of about 42 kDa. The recombinant protein was catalytically activated at low pH and the mature enzyme of 39 kDa displayed thermal instability and maximal activity at 37 degrees C and pH 6.0. Immunocytochemical analysis revealed Sl-CathL production in the midgut epithelium and secretion from vesicles containing the enzyme into the gut lumen, confirming an important role for this enzyme in the digestion of the insect larvae. The expression profile identified by RT-PCR through the biological cycle indicates that Sl-CathL is mainly produced in larval stages, with peak expression in 30-day-old larvae. At this stage, the enzyme is 1250-fold more expressed than in the pupal fase, in which the lowest expression level is detected. This enzyme is also produced in the adult stage, albeit in lesser abundance, assuming the presence of a different array of enzymes in the digestive system of adults. Tissue-specific analysis revealed that Sl-CathL mRNA synthesis occurs fundamentally in the larval midgut, thereby confirming its function as a digestive enzyme, as detected in immunolocalization assays. The catalytic efficiency of the purified recombinant enzyme was calculated using different substrates (Z-Leu-Arg-AMC, Z-Arg-Arg-AMC and Z-Phe-Arg-AMC) and rSl-CathL exhibited hydrolysis preference for Z-Leu-Arg-AMC (k(cat)/K-m = 37.53 mM S-1), which is similar to other insect cathepsin L-like enzymes. rSl-CathL activity inhibition assays were performed using four recombinant sugarcane cystatins. rSl-CathL was strongly inhibited by recombinant cystatin CaneCPI-4 (K-i = 0.196 nM), indicating that this protease is a potential target for pest control. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, cercariae, schistosomula, and adult Schistosoma mansoni worms were incubated in vitro with the essential oil of Piper cubeba (PC-EO) at concentrations from 12.5 to 200 mu g/mL, and the viability was evaluated using an inverted microscopy. The effects of PC-EO at 100 and 200 mu g/mL on the stages of S. mansoni were similar to those of the positive control (PZQ at 12.5 mu g/mL), with total absence of mobility after 120 h. However, at concentrations from 12.5 to 50 mu g/mL, PC-EO caused a reduction in the viability of cercariae and schistosomula when compared with the negative control groups (RPMI 1640 or dechlorinated water) or (RPMI 1640 + 0.1% DMSO or dechlorinated water + 0.1% DMSO). On the other hand, adult S. mansoni worms remained normally active when incubated with PC-EO at concentrations of 12.5 and 25 mu g/mL, and their viabilities were similar to those of the negative control groups. In addition, at concentrations ranging from 50 to 200 mu g/mL, separation of all the coupled adult worms was observed after 24 h of incubation, which is related to the fact of the reduction in egg production at this concentration. The main chemical constituents of PC-EO were identified by gas chromatography-mass spectrometry as being sabinene (19.99%), eucalyptol (11.87%), 4-terpineol (6.36%), beta-pinene (5.81%), camphor (5.61%), and delta-3-carene (5.34%). The cytotoxicity of the PC-EO was determined, and a significant cytotoxicity was only obtained in the concentration of 200 mu g/mL after 24 h treatment. The results suggest that PC-EO possesses an effect against cercariae, schistosomula, and adult worms of the S. mansoni.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The designation of biodiesel as an environmental-friendly alternative to diesel oil has improved its commercialization and use. However, most biodiesel environmental safety studies refer to air pollution and so far there have been very few literature data about its impacts upon other biotic systems, e.g. water, and exposed organisms. Spill simulations in water were carried out with neat diesel and biodiesel and their blends aiming at assessing their genotoxic potentials should there be contaminations of water systems. The water soluble fractions (WSF) from the spill simulations were submitted to solid phase extraction with C-18 cartridge and the extracts obtained were evaluated carrying out genotoxic and mutagenic bioassays [the Salmonella assay and the in vitro MicroFlow (R) kit (Litron) assay]. Mutagenic and genotoxic effects were observed, respectively, in the Salmonella/microsome preincubation assay and the in vitro MN test carried out with the biodiesel WSF. This interesting result may be related to the presence of pollutants in biodiesel derived from the raw material source used in its production chain. The data showed that care while using biodiesel should be taken to avoid harmful effects on living organisms in cases of water pollution. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study was designed to assess the effects of in vitro selenium addition on intracellular hydrogen peroxide production by neutrophils from the milk and blood of dairy cows. Blood from 10 dairy cows and 20 milk samples from five dairy cows were incubated with 0 mg (control) or 10μM of sodium selenite. Then, milk and blood neutrophils were submitted for evaluation of intracellular hydrogen peroxide production by flow cytometry using 2',7'-dichlorofluorescein diacetate as a probe. The selenium status of the animals was evaluated by determination of the blood glutathione peroxidase activity. The results of the present work showed that in vitro selenium supplementation leads to an enhancement in intracellular hydrogen peroxide production, which indicates an improvement in the bactericidal effects of blood and milk neutrophils even in cows with a selenium-adequate status. Thus, the present study showed that in vitro Se supplementation leads to an enhancement in intracellular hydrogen peroxide production, indicating an improvement in the bactericidal effects of blood and milk neutrophils in cows with Se-adequate status.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Citokines are proteins produced by several cell types and secreted in response to various stimuli. These molecules are able to modify the behaviour of other cells inducing activities like growth, differentiation and apoptosis. In the last years, veterinary scientists have investigated the role played by these factors; in fact, cytokines can act as intercellular communicative signals in immune response, cell damage repair and hematopoiesis. Up to date, various cytokines have been identified and in depth comprehension of their effects in physiology, pathology and therapy is an interesting field of research. This thesis aims to understand the role played by these mediators during natural or experimentally induced pathologies. In particular, it has been evaluated the genic and protein expressions of a large number of cytokines during several diseases and starting from different matrix. Considering the heterogeneity of materials used in experimentations, multiple methods and protocols of nucleic acids and proteins extractions have been standardized. Results on cytokines expression obtained from various in vitro and in vivo experimental studies have shown how important these mediators are in regulation and modulation of the host immune response also in veterinary medicine. In particular, the analysis of inflammatory and septic markers, like cytokines, has allowed a better understanding in the pathogenesis during horse Recurrent Airway Obstruction, foal sepsis, Bovine Viral Diarrhea Virus infection and dog Parvovirus infection and the effects of these agents on the host immune system. As experimentations with mice have shown, some pathologies of the respiratory and nervous system can be reduced or even erased by blocking cytokines inflammatory production. The in vitro cytokines expression evaluation in cells which are in vivo involved in the response to exogenous (like pathogens) or endogenous (as it happens during autoimmune diseases) inflammatory stimuli could represent a model for studying citokines effects during the host immune response. This has been analyzed using lymphocytes cultured with several St. aureus strains isolated from bovine mastitic milk and different colostrum products. In the first experiment different cytokines were expressed depending on enterotoxins produced, justifying a different behaviour of the microrganism in the mammal gland. In the second one, bone marrow cells derived incubated with murine lymphocytes with colostrum products have shown various cluster of differentiation expression , different proliferation and a modified cytokines profile. A better understanding of cytokine expression mechanisms will increase the know-how on immune response activated by several pathogen agents. In particular, blocking the cytokine production, the inhibition or catalyzation of the receptor binding mechanism and the modulation of signal transduction mechanism will represent a novel therapeutic strategy in veterinary medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im Rahmen der Entwicklung einer Matrix für Fibroblasten zurAnwendung als dermales Äquivalent für den Aufbau einesin-vitro Testsystems für Wundauflagen wurden zunächstGelatine- und Agarfolien mit einer Streichanlage imLabormaßstab hergestellt. Keimdichtigkeit,Wasserdampfdurchlässigkeit, Elastizität, Wundverklebung,Dicke, Gewicht und Wassergehalt der Folien und zusätzlichdie Adsorption von Fibronectin an die Folienoberflächewurden bestimmt.Auf Basis einer 10 %-igen Gelatinelösung und durch Anwendungeines wasserlöslichen Carbodiimids (EDAC) konnten vernetzteGelatineschäume hergestellt werden. Untersuchungen derphysikalischen, chemischen und biologischen Eigenschaftender Gelatine-schäume dienten der Charakterisierung derMuster. Die Gelatineschäume wurden mit humanen Fibroblastenbeimpft und die zeitliche Entwicklung der Fibroblasten durchAnwendung der MTT Methode ermittelt. Zusätzlich wurde mit Hilfe des Antikörpers gegen Ki-67 die Proliferation derFibroblasten an Gefrierschnitten der Gelatineschäume untersucht.Die mit EDAC vernetzten und mit humanen Fibroblastenbeimpften Gelatineschäume dienten als dermales Äquivalentfür den Aufbau eines in-vitro Testsystems. Zur Untersuchungder Wechselwirkung zwischen verschiedenen Materialien undden Fibroblasten auf den Gelatineschäumen wurdenorientierende Versuche mit dem in-vitro Testsystem durchgeführt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poplar is considered a good candidate for phytoremediation, but its tolerance to heavy metals has not been fully investigated yet. In the present work, two different culture systems (in vitro and aeroponic/hydroponic) and two different stress tolerant clones of Populus alba (AL22 and Villafranca) were investigated for their total polyphenol and flavonoid content, individual phenolic compounds, polyamine, lipid peroxidation and hydrogen peroxide levels in response to Cu. In AL22 poplar plants cultured in vitro in the presence or absence of 50 μM Cu, total leaves polyphenol and flavonoid content was higher in treated samples than in controls but unaltered in the roots. Equally the same clone, grown under aeroponic conditions and hydroponically treated for 72 h with 100 μM Cu, displayed increased amount of polyphenols and flavonoids in the leaves, in particular chlorogenic acid and quercetin, and no differences in the roots. In exudates from treated roots total polyphenols and flavonoids, in particular catechin and epicatechin, were more abundant than in controls. Polyamine levels show an increase in conjugated putrescine (Put) and spermidine (Spd) was found. In the Villafranca clone, treated with 100 μM Cu for 6, 24 and 72 h, the pattern of polyphenol and flavonoid accumulation was the same as in AL22; in Cu-treated roots these compounds decreased compared with controls while they increased in root exudates. Free polyamine levels rose at 24 and 72 h while only conjugated Put increased at 24 h. Cu-treated Villafranca plants exhibited a higher malondialdehyde production than controls indicative of membrane lipid peroxidation and, therefore, oxidative stress. An in vitro experiment was carried to investigate the antioxidant effect of the polyamine spermidine (Spd). Exogenous Spd, supplied together with 100 μM Cu, reduced the accumulation of polyphenols and flavonoids, MDA and hydrogen peroxide induced by Cu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ovarialkarzinome stellen eine schwer zu therapierende onkologische Erkrankung mit im Durchschnitt sehr schlechter Prognose dar. Die Notwendigkeit einer weiteren Verbesserung der Therapie dieser Erkrankung ist sehr offensichtlich. Studien an anderen Tumorentitäten haben die große Bedeutung des Glukosestoffwechsels, speziell des Laktats, in der Erken- nung, Kategorisierung und Therapie von onkologischen Erkrankungen gezeigt. In der Kon- trolle des Glukosestoffwechsels, aber auch vieler anderer Funktionen, wie z. B. des Tumor- wachstums und des Zellüberlebens, hat sich der Hypoxia Inducible Factor (HIF) als beson- ders wichtig herausgestellt. In der vorliegenden Arbeit wurde daher der Glukosestoffwechsel in Ovarialkarzinomen und seine Beeinflussung durch eine Herunterregulierung von HIF-1α untersucht. Hierzu wurden die Ovarialkarzinomzelllinien OC 316 und IGROV1 (Wildtyp) und die Zelllinie OC 316 mit einem lentiviralen Vektor zur Herunterregulierung von HIF-1α ver- wendet. Das Wachstumsverhalten, die Laktatproduktion und der Glukoseverbrauch wurden bei diesen Zelllinien in vitro untersucht. Darüber hinaus wurden mithilfe der bildgebenden Biolumineszenz ATP, Laktat, Pyruvat und Glukose in Xenotransplantaten dieser Zelllinien gemessen. Diese in unserer Arbeitsgruppe entwickelte Methode erlaubt die quantitative Er- fassung von Metaboliten in selektiven Gewebsarealen, wie z. B. in vitalen Tumorregionen, in stomatösen Arealen oder im tumornahen Normalgewebe.rnIn dieser Arbeit kann gezeigt werden, dass die glykolytische Aktivität von Ovarialkarzinom- zelllinien mit dem Wachstumsverhalten positiv korreliert ist. Eine Herunterregulierung von HIF-1α führt zu einer deutlichen Verlangsamung des Zellwachstums, wobei allerdings alle HIF-Zielgene betroffen sein können. Des Weiteren wird mit den hier gezeigten Daten die prognostische Bedeutung des Laktats bestätigt. Hohe Laktatwerte in vitro waren mit schnel- lerem Wachstum korreliert. Zusätzlich zeigen die vorliegenden Daten, dass die gewonnenen Befunde in vitro nur näherungsweise auf die in vivo Situation übertragbar sind. Eine Herun- terregulierung von HIF-1α zeigt keine signifikant unterschiedlichen Laktatwerte in den Xe- notransplantaten. Allerdings spiegeln sich zelllinienspezifische Unterschiede in der metabo- lischen Aktivität in vitro im metabolischen Verhalten der entsprechenden Xenografttumoren recht gut wider.rnDie gewonnenen Ergebnisse weisen zum einen auf die prognostische Bedeutung einer Bestimmung von Laktatkonzentrationen aus Tumorbiopsien hin und bestätigen zum anderen die klinische Aussagekraft metabolischer Aktivitätsmessungen mittels PET. Solche Daten könnten dazu dienen Patienten einer individualisierten Therapie zuzuführen. Außerdem wur- de die Effektivität, aber auch die Komplexität einer gegen HIF-1α gerichteten Therapie auf Protein- und Genebene bestätigt. Somit zeigen die erzielten Resultate einerseits Möglichkei- ten einer individualisierten Therapie auf, andererseits unterstreichen sie die große Notwen- digkeit weiterer Grundlagenforschung auf diesem Gebiet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane proteins play an indispensable role in physiological processes. It is, therefore, not surprising that many diseases are based on the malfunction of membrane proteins. Hence membrane proteins and especially G-protein coupled receptors(GPCRs)- the largest subfamily- have become an important drug target. Due to their high selectivity and sensitivity membrane proteins are also feasible for the detection of small quantities of substances with biosensors. Despite this widespread interest in GPCRs due to their importance as drug targets and biosensors there is still a lack of knowledge of structure, function and endogenous ligands for quiet a few of the previously identified receptors.rnBottlenecks in over-expression, purification, reconstitution and handling of membrane proteins arise due to their hydrophobic nature. Therefore the production of reasonable amounts of functional membrane proteins for structural and functional studies is still challenging. Also the limited stability of lipid based membrane systems hampers their application as platforms forrnscreening applications and biosensors.rnIn recent years the in vitro protein synthesis became a promising alternative to gain better yields for expression of membrane proteins in bio-mimetic membrane systems. These expression systems are based on cell extracts. Therefore cellular effects on protein expression are reduced. The open nature of the cell-free expression systems easily allows for the adjustment of reactionrnconditions for the protein of interest. The cell-free expression in the presence of bio-mimetic membrane systems allows the direct incorporation of the membrane proteins and therefore skips the time-consuming purification and reconstitution processes. Amphiphilic block-copolymers emerged as promising alternative for the less stable lipid-based membrane systems. They, likernlipids, form membraneous structures in aqueous solutions but exhibit increased mechanical and chemical stability.rnThe aim of this work was the generation of a GPCR-functionalised membrane system by combining both promising alternatives: in vitro synthesis and polymeric membrane systems. This novel platform should be feasible for the characterisation of the incorporated GPCR. Immunodetection of Dopamine receptor 1 and 2 expressed in diblock- and triblock-polymersomes demonstrated the successful in vitro expression of GPCRs in polymeric membranes. Antibodyrnbinding studies suggested a favoured orientation of dopamine receptors in triblockpolymersomes.rnA dopamine-replacement assay on DRD2-functionalised immobilised triblockpolymersomes confirmed functionality of the receptor in the polymersomes. The altered binding curve suggests an effect of the altered hydrophobic environment presented by the polymer membrane on protein activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zielsetzung der vorliegenden Arbeit war die Erforschung ursächlicher Unterschiede im Energiestoffwechsel von hoch- und niedrig-glykolytischen Tumorzelllinien. Darüber hinaus wurde die Hypothese überprüft, wonach eine hohe glykolytische Aktivität in Tumorzellen zu einer Anreicherung von antioxidativen Metaboliten führt und infolgedessen eine Therapieresistenz gegen Gammabestrahlung hervorruft. Abschließend sollte durch biochemische und gentechnische Manipulationen des Energie- bzw. Glukosestoffwechsels die Strahlenresistenz von Tumorzellen verändert und somit neue therapeutische Interventionen eröffnet werden.rnDie zur Klärung dieser Fragestellung erforderlichen molekularbiologischen Experimente erfolgten an jeweils zwei Ovarialkarzinomzelllinien (OC316 und IGROV-1) und zwei Plattenepithelkarzinomzelllinien der Kopf- und Halsregion (SAS und FaDu) sowie den entsprechenden Experimentaltumoren.rnUnabhängig von der Tumorentität und dem Tumormodell konnte gezeigt werden, dass eine erhöhte Expression Stoffwechsel-assoziierter Proteine mit einem gesteigerten Energiestoffwechsel einhergeht. Der Transfer der Ovarial- und Plattenepithelkarzinomzelllinien in das Mausmodell führte zu keiner grundsätzlichen Änderung des Tumormikromilieus. So wies die hoch-metabolische Linie OC316 in vitro und in vivo eine stark erhöhte MCT-4 Expression auf, deren gentechnische Inhibition jedoch zu keiner Reduktion der Glykolyserate führte.rnDie Hypothese, dass die Laktatproduktion als prädiktiver Marker für die Strahlenresistenz einer Tumorzelllinie fungiert, konnte nicht bestätigt werden. Jedoch führte die Manipulation der intrazellulären Laktatbildung und des Energiestoffwechsels mit nicht zelltoxischen Konzentrationen von 2-Deoxy-D-glukose (2DG) und Rotenon (ROT) bei den Ovarialkarzinomzelllinien zu einer Erhöhung der intrazellulären O2--Anionen, einer Zunahme der Strahlenempfindlichkeit sowie zur Steigerung der initialen und residualen DNA-Doppelstrangbrüche nach Gammabestrahlung.rnHierbei wirken 2DG und ROT synergistisch durch die Inhibierung antioxidativer Systeme sowie durch die Erhöhung des zellulären Radikal-Status. Die Anwendung von Stoffwechselmanipulatoren zur Optimierung und Unterstützung vorhandener Radikal-erzeugender Therapieformen wird aktuell in klinischen Studien überprüft. Translational könnte die durch 2DG und ROT beschriebene Erhöhung der Strahlenempfindlichkeit bei Ovarialkarzinomzelllinien z. B. in Kombination mit intensitätsmodulierten Strahlentherapien neue Behandlungsmöglichkeiten eröffnen, was in weiterführenden in vivo Studien zu überprüfen ist.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gli stress abiotici determinando modificazioni a livello fisiologico, biochimico e molecolare delle piante, costituiscono una delle principali limitazioni per la produzione agricola mondiale. Nel 2007 la FAO ha stimato come solamente il 3,5% della superficie mondiale non sia sottoposta a stress abiotici. Il modello agro-industriale degli ultimi cinquant'anni, oltre ad avere contribuito allo sviluppo economico dell'Europa, è stato anche causa di inquinamento di acqua, aria e suolo, mediante uno sfruttamento indiscriminato delle risorse naturali. L'arsenico in particolare, naturalmente presente nell'ambiente e rilasciato dalle attività antropiche, desta particolare preoccupazione a causa dell'ampia distribuzione come contaminante ambientale e per gli effetti di fitotossicità provocati. In tale contesto, la diffusione di sistemi agricoli a basso impatto rappresenta una importante risorsa per rispondere all'emergenza del cambiamento climatico che negli anni a venire sottoporrà una superficie agricola sempre maggiore a stress di natura abiotica. Nello studio condotto è stato utilizzato uno stabile modello di crescita in vitro per valutare l'efficacia di preparati ultra diluiti (PUD), che non contenendo molecole chimiche di sintesi ben si adattano a sistemi agricoli sostenibili, su semi di frumento preventivamente sottoposti a stress sub-letale da arsenico. Sono state quindi condotte valutazioni sia a livello morfometrico (germinazione, lunghezza di germogli e radici) che molecolare (espressione genica valutata mediante analisi microarray, con validazione tramite Real-Time PCR) arricchendo la letteratura esistente di interessanti risultati. In particolare è stato osservato come lo stress da arsenico, determini una minore vigoria di coleptile e radici e a livello molecolare induca l'attivazione di pathways metabolici per proteggere e difendere le cellule vegetali dai danni derivanti dallo stress; mentre il PUD in esame (As 45x), nel sistema stressato ha indotto un recupero nella vigoria di germoglio e radici e livelli di espressione genica simili a quelli riscontrati nel controllo suggerendo un effetto "riequilibrante" del metabolismo vegetale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell therapies for articular cartilage defects rely on expanded chondrocytes. Mesenchymal stem cells (MSC) represent an alternative cell source should their hypertrophic differentiation pathway be prevented. Possible cellular instruction between human articular chondrocytes (HAC) and human bone marrow MSC was investigated in micromass pellets. HAC and MSC were mixed in different percentages or incubated individually in pellets for 3 or 6 weeks with and without TGF-beta1 and dexamethasone (±T±D) as chondrogenic factors. Collagen II, collagen X and S100 protein expression were assessed using immunohistochemistry. Proteoglycan synthesis was evaluated applying the Bern score and quantified using dimethylmethylene blue dye binding assay. Alkaline phosphatase activity (ALP) was detected on cryosections and soluble ALP measured in pellet supernatants. HAC alone generated hyaline-like discs, while MSC formed spheroid pellets in ±T±D. Co-cultured pellets changed from disc to spheroid shape with decreasing number of HAC, and displayed random cell distribution. In -T-D, HAC expressed S100, produced GAG and collagen II, and formed lacunae, while MSC did not produce any cartilage-specific proteins. Based on GAG, collagen type II and S100 expression chondrogenic differentiation occurred in -T-D MSC co-cultures. However, quantitative experimental GAG and DNA values did not differ from predicted values, suggesting only HAC contribution to GAG production. MSC produced cartilage-specific matrix only in +T+D but underwent hypertrophy in all pellet cultures. In summary, influence of HAC on MSC was restricted to early signs of neochondrogenesis. However, MSC did not contribute to the proteoglycan deposition, and HAC could not prevent hypertrophy of MSC induced by chondrogenic stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, aerosol processes are widely used for the manufacture of nanoparticles (NPs), creating an increased occupational exposure risk of workers, laboratory personnel and scientists to airborne particles. There is evidence that possible adverse effects are linked with the accumulation of NPs in target cells, pointing out the importance of understanding the kinetics of particle internalization. In this context, the uptake kinetics of representative airborne NPs over 30 min and their internalization after 24 h post-exposure were investigated by the use of a recently established exposure system. This system combines the production of aerosolized cerium oxide (CeO(2)) NPs by flame spray synthesis with its simultaneous particle deposition from the gas-phase onto A549 lung cells, cultivated at the air-liquid interface. Particle uptake was quantified by mass spectrometry after several exposure times (0, 5, 10, 20 and 30 min). Over 35% of the deposited mass was found internalized after 10 min exposure, a value that increased to 60% after 30 min exposure. Following an additional 24 h post-incubation, a time span, after which adverse biological effects were observed in previous experiments, over 80% of total CeO(2) could be detected intracellularly. On the ultrastructural level, focal cerium aggregates were present on the apical surface of A549 cells and could also be localized intracellularly in vesicular structures. The uptake behaviour of aerosolized CeO(2) is in line with observations on cerium suspensions, where particle mass transport was identified as the rate-limiting factor for NP internalization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the many proposed advantages related to nanotechnology, there are increasing concerns as to the potential adverse human health and environmental effects that the production of, and subsequent exposure to nanoparticles (NPs) might pose. In regard to human health, these concerns are founded upon the plethora of knowledge gained from research relating to the effects observed following exposure to environmental air pollution. It is known that increased exposure to environmental air pollution can cause reduced respiratory health, as well as exacerbate pre-existing conditions such as cardiovascular disease and chronic obstructive pulmonary disease. Such disease states have also been associated with exposure to the NP component contained within environmental air pollution, raising concerns as to the effects of NP exposure. It is not only exposure to accidentally produced NPs however, which should be approached with caution. Over the past decades, NPs have been specifically engineered for a wide range of consumer, industrial and technological applications. Due to the inevitable exposure of NPs to humans, owing to their use in such applications, it is therefore imperative that an understanding of how NPs interact with the human body is gained. In vivo research poses a beneficial model for gaining immediate and direct knowledge of human exposure to such xenobiotics. This research outlook however, has numerous limitations. Increased research using in vitro models has therefore been performed, as these models provide an inexpensive and high-throughput alternative to in vivo research strategies. Despite such advantages, there are also various restrictions in regard to in vitro research. Therefore, the aim of this review, in addition to providing a short perspective upon the field of nanotoxicology, is to discuss (1) the advantages and disadvantages of in vitro research and (2) how in vitro research may provide essential information pertaining to the human health risks posed by NP exposure.