972 resultados para Illinois Institute of Natural Resources. Division of Environmental Management
Resumo:
Description Through a combination of global data analysis and focused country level analysis, this timely book provides answers to the most pertinent country and industry specific questions defining the current relationship between technology, natural resources and economic growth. Contents Contents: Preface Part I: Global Analysis 1. Economic Growth and the Environment 2. Energy Substitution and Carbon Dioxide Emissions 3. Pollution, Natural Resources, and Economic Growth 4. Trade Openness and Environmental Quality 5. Environmental Productivity 6. Energy Price-induced Technological Change 7. Trade-induced Technological Change 8. Regional Economic Integration Part II: Country-Level Analysis 9. Emissions Trading in the United States 10. Increasing Returns to Pollution Abatement in the United States 11. Policy-induced Competitiveness in the United States 12. Trade Liberalization, Technology, and the Environment 13. Policy Implementation and its Effectiveness in China 14. Clean Technological Inventions in Japan 15. Intervention of Economic Policy and its Nonlinear Effects in Japan 16. The Next Emerging Giants: India and Africa 17. Conclusion Index Further information Through a combination of global data analysis and focused country level analysis, this timely book provides answers to the most pertinent country and industry specific questions defining the current relationship between technology, natural resources and economic growth. Shunsuke Managi takes a distinctive approach by focusing on the design and implementation of environmental regulations that encourage technological progress and, in doing so, looks at ways to ensure productivity improvements in the face of increasingly stringent environmental regulations and natural resource depletion. The findings in this important book demonstrate how successful environmental policies can contribute to efficiency by encouraging, rather than inhibiting, technological innovation. Technology, Natural Resources and Economic Growth will provide a valuable resource for a wide readership including postgraduate students, researchers, academics and policy makers working in the fields of environmental and ecological economics.
Resumo:
Human cytochrome P450 (P450) enzymes are involved in the oxidation of natural products found in foods, beverages, and tobacco products and their catalytic activities can also be modulated by components of the materials. The microsomal activation of aflatoxin B1 to the exo-3,9-epoxide is stimulated by flavone and 7,8-benzoflavone, and attenuated by the flavonoid naringenin, a major component of grapefruit. P4502E1 has been demonstrated to play a potentially major role in the activation of a number of very low-molecular weight cancer suspects, including ethyl carbamate (urethan), which is present in alcoholic beverages and particularly stone brandies. The enzyme (P4502E1) is also known to be inducible by ethanol. Tobacco contains a large number of potential carcinogens. In human liver microsomes a significant role for P4501A2 can be demonstrated in the activation of cigarette smoke condensate. Some of the genotoxicity may be due to arylamines. P4501A2 is also inhibited by components of crude cigarette smoke condensate. The tobacco-specific nitrosamines are activated by a number of P450 enzymes. Of those known to be present in human liver, P4501A2, 2A6, and 2E1 can activate these nitrosamines to genotoxic products.
Resumo:
This article integrates the material/energy flow analysis into a production frontier framework to quantify resource efficiency (RE). The emergy content of natural resources instead of their mass content is used to construct aggregate inputs. Using the production frontier approach, aggregate inputs will be optimised relative to given output quantities to derive RE measures. This framework is superior to existing RE indicators currently used in the literature. Using the exergy/emergy content in constructing aggregate material or energy flows overcomes a criticism that mass content cannot be used to capture different quality of differing types of resources. Derived RE measures are both ‘qualitative’ and ‘quantitative’, whereas existing RE indicators are only qualitative. An empirical examination into the RE of 116 economies was undertaken to illustrate the practical applicability of the new framework. The results showed that economies, on average, could reduce the consumption of resources by more than 30% without any reduction in per capita gross domestic product (GDP). This calculation occurred after adjustments for differences in the purchasing power of national currencies. The existence of high variations in RE across economies was found to be positively correlated with participation of people in labour force, population density, urbanisation, and GDP growth over the past five years. The results also showed that economies of a higher income group achieved higher RE, and those economies that are more dependent on imports and primary industries would have lower RE performance.
Resumo:
Healthy governance systems are key to delivering effective outcomes in any broad domain of natural resource management (NRM). One of Australia's emerging NRM governance domains is our national framework for greenhouse gas abatement (GGA), as delivered through a wide range of management practices in the Australian landscape. The emerging Landscape-Based GGA Domain represents an innovative governance space that straddles both the nation's broader NRM Policy and Delivery Domain and Australia's GGA Domain. As a point-in-time benchmark, we assess the health of this hybrid domain as it stood at the end of 2013. At that time, the domain was being progressed through the Australian government's Clean Energy Package and, more particularly, its Carbon Farming Initiative (CFI). While significant changes are currently under development by a new Australian government, this paper explores key areas of risk within the governance system underpinning this emerging hybrid domain at that point in time. We then map some potential reform or continuous improvement pathways required (from national to paddock scale) with the view to securing improved landscape outcomes over time through widespread GGA activities.
Resumo:
The collection of basic environmental data by industry members was successful and offers a way of overcoming the problems associated with differences in scale between the environment and fisheries datasets. A simple method of collecting environmental data was developed that was only a small time burden on skippers, yet has the potential to provide very useful information on the same scale as the catch and effort data recorded in the logbooks. The success of this trial was aided by the natural interest of fishers to learn more about the environment in which they fish. The archival temperature-depth tags chosen proved robust, reliable and easy to use. While the use of large scale environmental data may not yield significant improvements in stock assessments for most SESSF species, fine-scale data collected from selected vessels using methods developed during this project may, in the longer term, be useful for incorporation into CPUE standardisations in the future...
Resumo:
The unique combination of landscapes and processes that are present and operate on Fraser Island (K'gari) create a dynamic setting that is capable of recording past environmental events, climate variations and former landscapes. Likewise, its geographic position makes Fraser Island sensitive to those events and processes. Based on optically stimulated luminescence dating, the records archived within the world's largest sand island span a period that has the potential to exceed 750 ka and contain specific records that are of extremely high resolution over the past 40,000 years. This is due to the geographic position of Fraser Island, which lies in the coastal subtropical region of Queensland Australia. Fraser Island is exposed to the open ocean currents of the Coral Sea on the east coast and the waters of Hervey Bay on its western margin and is positioned to receive moisture from the Indo-Australian monsoon, southeast trade winds and experiences occasional tropical and ex-tropical cyclones. We review literature that presents the current level of understanding of sea level change, ecological variation and environmental change on Fraser Island. The previous works illustrate the importance of Fraser Island and may link processes, environments and climates on Fraser Island with global records.
Resumo:
In dryland agricultural systems of the subtropical, semi-arid region of north-eastern Australia, water is the most limiting resource. Crop productivity depends on the efficient use of rainfall and available water stored in the soil during fallow. Agronomic management practices including a period of fallow, stubble retention, and reduced tillage enhance reserves of soil water. However, access to stored water in these soils may be restricted by the presence of growth-limiting conditions in the rooting zone of the crop. These have been termed as subsoil constraints. Subsoil constraints may include compacted or gravel layers (physical), sodicity, salinity, acidity, nutrient deficiencies, presence of toxic elements (chemical) and low microbial activity (biological). Several of these constraints may occur together in some soils. Farmers have often not been able to obtain the potential yield determined by their prevailing climatic conditions in the marginal rainfall areas of the northern grains region. In the past, the adoption of soil management practices had been largely restricted to the top 100 mm soil layer. Exploitation of the subsoil as a source of water and nutrients has largely been overlooked. The key towards realising potential yields would be to gain better understanding of subsoils and their limitations, then develop options to manage them practically and economically. Due to the complex nature of the causal factors of these constraints, efforts are required for a combination of management approaches rather than individual options, with the aim to combat these constraints for sustainable crop production, managing natural resources and avoiding environmental damage.
Resumo:
Plasma polymerisation is an effective tool for fabrication of thin films from volatile organic monomers. RF plasma assisted deposition is used for one-step, chemical-free polymerisation of nonsynthetic materials derived directly from agricultural produces. By varying the deposition parameters, especially the input RF power, the film properties can be tailored for a range of uses, including electronics or biomedical applications. The fabricated thin films are optically transparent with refractive index close to that of glass. Given the diversity of essential oils, this paper compares the chemical and physical properties of thin films fabricated from several commercially exploited essential oils and their components. It is interesting to note that some of the properties can be tailored for various applications even though the chemical structure of the derived polymer is very similar. The obtained material properties also show that the synthesised materials are suitable as encapsulating layers for biodegradable implantable metals.
Resumo:
Several cyanobacterial genera produce the hepatotoxins, microcystins. Microcystins are produced only in cells that have microcystin synthetase gene (mcy) clusters, which encode enzyme complexes involved in microcystin biosynthesis. Microcystin-producing and nonmicrocystin-producing genotypes of single cyanobacterial genus may occur simultaneously in situ. Previously, the effects of environmental factors on the growth and microcystin production of cyanobacteria have mainly been studied by means of isolated cyanobacteria cultures in the laboratory. Studies in the field have been difficult, owing to the lack of methods to identify and quantify the different genotypes. In this study, genus-specific microcystin synthetase E (mcyE) gene primers were designed and a method to identify and quantify the mcyE copy numbers was developed and used in situ. Microcystis and Anabaena mcyE genes were observed in two Finnish lakes. Microcystis appeared to be the most abundant microcystin producer in Lake Tuusulanjärvi and in one basin of Lake Hiidenvesi. Because the most potent microcystin-producing genus of a lake can be identified, it will be possible in the future to design genus-targeted strategies for lake restoration. Effects of P and N concentrations on the biomass of microcystin-producing and nonmicrocystin-producing Microcystis strains and an Anabaena strain were studied in cultures. P and N concentrations and their combined effect increased cyanobacterial biomass of all Microcystis strains. The biomass of microcystin-producing Microcystis was higher than that of nonmicrocystin-producing strains at high nutrient concentrations. The P concentration increased Anabaena biomass, but the effect of N concentration was statistically insignificant for growth yield, probably due to the ability of the genus to fix molecular N2. P and N concentrations and combined nutrients caused an increase in cellular microcystin concentrations of the Microcystis strain cultivated in chemostat cultures. Cyanobacteria are able to hydrolyse nutrients from organic matter through extracellular enzyme activities. Leucine aminopeptidase (LAP) activity was observed in an axenic N2-fixing Anabaena strain grown in batch cultures. The P concentration caused a statistically significant increase in LAP activity, whereas the effect of N concentration was insignificant. The highest LAP activities were observed in the most eutrophic basins of Lake Hiidenvesi. LAP activity probably originated mostly from attached heterotrophic bacteria and less from cyanobacteria.
Resumo:
Radioactive particles from three locations were investigated for elemental composition, oxidation states of matrix elements, and origin. Instrumental techniques applied to the task were scanning electron microscopy, X-ray and gamma-ray spectrometry, secondary ion mass spectrometry, and synchrotron radiation based microanalytical techniques comprising X-ray fluorescence spectrometry, X-ray fluorescence tomography, and X-ray absorption near-edge structure spectroscopy. Uranium-containing low activity particles collected from Irish Sea sediments were characterized in terms of composition and distribution of matrix elements and the oxidation states of uranium. Indications of the origin were obtained from the intensity ratios and the presence of thorium, uranium, and plutonium. Uranium in the particles was found to exist mostly as U(IV). Studies on plutonium particles from Runit Island (Marshall Islands) soil indicated that the samples were weapon fuel fragments originating from two separate detonations: a safety test and a low-yield test. The plutonium in the particles was found to be of similar age. The distribution and oxidation states of uranium and plutonium in the matrix of weapon fuel particles from Thule (Greenland) sediments were investigated. The variations in intensity ratios observed with different techniques indicated more than one origin. Uranium in particle matrixes was mostly U(IV), but plutonium existed in some particles mainly as Pu(IV), and in others mainly as oxidized Pu(VI). The results demonstrated that the various techniques were effectively applied in the characterization of environmental radioactive particles. An on-line method was developed for separating americium from environmental samples. The procedure utilizes extraction chromatography to separate americium from light lanthanides, and cation exchange to concentrate americium before the final separation in an ion chromatography column. The separated radiochemically pure americium fraction is measured by alpha spectrometry. The method was tested with certified sediment and soil samples and found to be applicable for the analysis of environmental samples containing a wide range of Am-241 activity. Proceeding from the on-line method developed for americium, a method was also developed for separating plutonium and americium. Plutonium is reduced to Pu(III), and separated together with Am(III) throughout the procedure. Pu(III) and Am(III) are eluted from the ion chromatography column as anionic dipicolinate and oxalate complexes, respectively, and measured by alpha spectrometry.
Resumo:
Population dynamics are generally viewed as the result of intrinsic (purely density dependent) and extrinsic (environmental) processes. Both components, and potential interactions between those two, have to be modelled in order to understand and predict dynamics of natural populations; a topic that is of great importance in population management and conservation. This thesis focuses on modelling environmental effects in population dynamics and how effects of potentially relevant environmental variables can be statistically identified and quantified from time series data. Chapter I presents some useful models of multiplicative environmental effects for unstructured density dependent populations. The presented models can be written as standard multiple regression models that are easy to fit to data. Chapters II IV constitute empirical studies that statistically model environmental effects on population dynamics of several migratory bird species with different life history characteristics and migration strategies. In Chapter II, spruce cone crops are found to have a strong positive effect on the population growth of the great spotted woodpecker (Dendrocopos major), while cone crops of pine another important food resource for the species do not effectively explain population growth. The study compares rate- and ratio-dependent effects of cone availability, using state-space models that distinguish between process and observation error in the time series data. Chapter III shows how drought, in combination with settling behaviour during migration, produces asymmetric spatially synchronous patterns of population dynamics in North American ducks (genus Anas). Chapter IV investigates the dynamics of a Finnish population of skylark (Alauda arvensis), and point out effects of rainfall and habitat quality on population growth. Because the skylark time series and some of the environmental variables included show strong positive autocorrelation, the statistical significances are calculated using a Monte Carlo method, where random autocorrelated time series are generated. Chapter V is a simulation-based study, showing that ignoring observation error in analyses of population time series data can bias the estimated effects and measures of uncertainty, if the environmental variables are autocorrelated. It is concluded that the use of state-space models is an effective way to reach more accurate results. In summary, there are several biological assumptions and methodological issues that can affect the inferential outcome when estimating environmental effects from time series data, and that therefore need special attention. The functional form of the environmental effects and potential interactions between environment and population density are important to deal with. Other issues that should be considered are assumptions about density dependent regulation, modelling potential observation error, and when needed, accounting for spatial and/or temporal autocorrelation.
Resumo:
Parkinson´s disease (PD) is a debilitating age-related neurological disorder that affects various motor skills and can lead to a loss of cognitive functions. The motor symptoms are the result of the progressive degeneration of dopaminergic neurons within the substantia nigra. The factors that influence the pathogenesis and the progression of the neurodegeneration remain mostly unclear. This study investigated the role of various programmed cell death (PCD) pathways, oxidative stress, and glial cells both in dopaminergic neurodegeneration and in the protective action of various drugs. To this end, we exposed dopaminergic neuroblastoma cells (SH-SY5Y cells) to 6-OHDA, which produces oxidative stress and activates various PCD modalities that result in neuronal degeneration. Additionally, to explore the role of glia, we prepared rat midbrain primary mixed-cell cultures containing both neurons and glial cell types such as microglia and astroglia and then exposed the cultures to either MPP plus or lipopolysaccharide. Our results revealed that 6-OHDA activated several PCD pathways including apoptosis, autophagic stress, lysosomal membrane permeabilization, and perhaps paraptosis in SH-SY5Y cells. Furthermore, we found that minocycline protected SH-SY5Y cells from 6-OHDA by inhibiting both apoptotic and non-apoptotic PCD modalities. We also observed an inconsistent neuroprotective effect of various dietary anti-oxidant compounds against 6-OHDA toxicity in vitro in SH-SY5Y cells. Specifically, quercetin and curcumin exerted neuroprotection only within a narrow concentration range and a limited time frame, whereas resveratrol and epigallocatechin 3-gallate provided no protection whatsoever. Lastly, we found that molecules such as amantadine may delay or even halt the neurodegeneration in primary cell cultures by inhibiting the release of neurotoxic factors from overactivated microglia and by enhancing the pro-survival actions of astroglia. Together these data suggest that the strategy of dampening oxidative species with anti-oxidants is less effective than preventing the production of toxic factors such as oxidative and pro-inflammatory molecules by pathologically activated microglia. This would subsequently prevent the activation of various PCD modalities that cause neuronal degeneration.
Resumo:
(PDF contains 1 page.)
Resumo:
(PDF contains 1 page.)