927 resultados para High Performance liquid chromatography coupled with mass spectrometry (LC-MS)
Resumo:
A method for quantifying urinary 2,5-hexanedione was optimized and validated. Urine samples were hydrolyzed and derivatized with 2,4-dinitrophenylhydrazine. The analyte was separated in a high performance liquid chromatography system with a diode array detector, using a C18 column (150 x 4.6 mm, p.d. 5 µm) and a mobile phase composed of phosphate buffer pH 2.3:acetonitrile (40:60, v/v), at a flow rate of 1 mL/min. The chromatograms were monitored at 334 nm. Retention time was 7.3 minutes. Main validation parameters were: coefficient of determination: 0.9994, accuracy: 96 to 107%; intra-assay precision (RSD): 3.08 to 6.72%; inter-assay precision (RSD): 2.54 to 8.17% and limit of quantitation of 0.19 µg/mL.
Resumo:
Recycling of paper in industrial scale has become an established practice worldwide. In this work, organic compositions of three different kinds of sludge generated in recycle paper industry were studied, and the incorporation of one of those sludge in briket was also investigated. The characterization of organic compounds in sludge samples and briket was performed using Gas Chromatography coupled with Mass Spectrometry after a Soxhlet extraction. Different chemical classes were identified in each type of sludge, but just the sludge composed by cellulose residue did not presented polyaromatic hydrocarbons. Four formulations of sludge incorporated with charcoal for briket production were evaluated.
Resumo:
The objective of this work was to determine the coefficients of sorption and desorption of picloram in Ultisol (PVA) and Oxisol (LVA), displaying different physical and chemical characteristics. Samples of soil were collected at the 0 20 cm depth in degraded pasture areas in Viçosa-MG. Firstly, the equilibrium time between the herbicide in solution and the herbicide which was sorbed in the soil was determined by the Batch Equilibrium method. The time required was 24 hours. Sorption and desorption studies were carried out under controlled laboratory conditions; the sorption evaluation consisted in adding 10.0 mL of herbicide solutions at different concentrations to tubes containing 2.00 g of soil, with vertical rotary agitation being maintained during the pre-determined equilibrium time. After centrifugation, supernatant extract cleaning and filtration, herbicide concentration was determined by high performance liquid chromatography (HPLC) with UV detection at 254 nm. Desorption was evaluated using the samples in the tubes after the sorption tests. The Freundlich model was used for interpretation of the sorption process. Ultisol showed higher adsorption coefficient (Kf a) compared with Oxisol, which may be attributed to the lower pH of the soil and its higher organic matter content. Desorption process occurred in both soils; the LVA allowed greater release of the previously sorbed molecules.
Resumo:
Methoxypyrazines are aroma active compounds found in many wine varietals. These compounds can be of either grape-derived nature or can be introduced into wines via Coccinellidae beetles. Regardless of their origin, methoxypyrazines can have either a beneficial role for wine quality, contributing to the specificity of certain wine varietals (Cabernet sauvignon, Cabernet franc, Sauvignon blanc) or a detrimental role, particularly at higher concentrations, resulting in overpowering green, unripe and herbaceous notes. When methoxypyrazines of exogenous nature are responsible for these unpleasant characteristics, wines are considered to be affected by what is generally known as Ladybug taint (LBT). This is work is a collection of studies seeking to create a sensitive analytical method for the detection and quantification of methoxypyrazines in wines; to investigate the role of different Coccinellidae species in the tainting of wines with LBT and identify the main compounds in ladybug tainted wines responsible for the typical green herbaceous characteristics; to determine the human detection threshold of 2,5-dimethyl-3-methoxypyrazine in wines as well as investigate its contribution to the aroma of wines; and finally to survey methoxypyrazine concentrations in a large set of wines from around the world. In the first study, an analytical method for the detection and quantitation of methoxypyrazines in wines was created and validated. The method employs multidimensional Gas Chromatography coupled with Mass Spectrometry to detect four different methoxypyrazines (2,5-dimethyl-3-methoxypyrazine, isobutyl methoxypyrazine, secbutyl methoxypyrazine and isopropyl methoxypyrazines) in wine. The low limits of detection for the compounds of interest, improved separation and isolation capabilities, good validation data, as well as the ease of use recommend this method as a good alternative to the existing analytical methods for methoxypyrazine detection in wine. In the second study the capacity of two Coccinellidae species, found in many wine regions – Harmonia axyridis and Coccinella septempunctata - to taint wines is evaluated. Coccinella septempunctata is shown to be as capable as causing LBT in wines as Harmonia axyridis. Dimethyl methoxypyrazine, previously thought to be of exogenous nature only (from Coccinellidae haemolymph), is also detected in control (untainted) wines. The main odor active compounds in LBT wines are investigated through Aroma Extract Dilution Assay. These compounds are identified as isopropyl methoxypyrazine, sec- and iso- butyl methoxypyrazine. In the third study, the human detection threshold for dimethyl methoxypyrazine in wine is established to be 31 ng/L in the orthonasal modality and 70 ng/L retronasally. After wines spiked with various amounts of dimethyl methoxypyrazine are evaluated sensorally, dimethyl methoxypyrazine causes significant detrimental effects to wine aroma at a concentration of 120 ng/L. The final study examines methoxypyrazine (dimethyl methoxypyrazine, isopropyl methoxypyrazine, secbutyl methoxypyrazine and isobutyl methoxypyrazine) concentrations in 187 wines from around the world. Dimethyl methoxypyrazine is detected in the majority of the red wines tested. Data are interpreted through statistical analyses. A new measure for predicting greenness/herbaceousness in wines - methoxypyrazine “total impact factor” is proposed.
Resumo:
La réduction de la taille des particules jusqu’à l’obtention de nanocristaux est l’une des approches utilisées afin d’améliorer la pénétration cutanée des médicaments à usage topique. Nous proposons que la fabrication d’une formulation semi solide (hydrogel) à base de nanosuspension de docosanol, aboutira à une diffusion du principe actif supérieure à celle du produit commercial Abreva®, à travers des membranes synthétiques de polycarbonates. Le broyage humide est la technique proposée pour la production des nanoparticules de docosanol. Nous proposons aussi la préparation d’une formulation semi-solide (hydrogel) à usage topique à partir de la nanosuspension de docosanol. La nanosuspension de docosanol est obtenue par dispersion du docosanol en solution aqueuse en présence du polymère stabilisant hydroxypropylcellulose (HPC) et du surfactant laurylsulfate de sodium (SDS) suivi d’un broyage humide à faible ou à haute énergie. L’hydrogel de docosanol nanoformulé est préparé à l’aide de la nanosuspension de docosanol qui subit une gélification par le carbopol Ultrez 21 sous agitation mécanique suivie d’une neutralisation au triéthanolamine TEA. La taille des particules de la nanosuspension et de l’hydrogel a été déterminée par diffusion dynamique de la lumière (DLS). Une méthode analytique de chromatographie liquide à haute performance (HPLC) munie d’un détecteur évaporatif (ELSD) a été développée et validée pour évaluer la teneur de docosanol dans les préparations liquides, dans les différentes nanosuspensions et dans les hydrogels de docosanol. L’état de cristallinité des nanocristaux dans la nanosuspension et dans l’hydrogel a été étudié par calorimétrie différentielle à balayage. La morphologie de la nanosuspension et de l’hydrogel de docosanol a été examinée par microscopie électronique à balayage (MEB). Les propriétés rhéologiques et de stabilité physique à différentes températures ont été aussi étudiées pour la formulation semi-solide (hydrogel). De même, la libération in vitro du docosanol contenu dans l’hydrogel et dans le produit commercial Abreva® a été étudiée à travers deux membranes de polycarbonates de taille de pores 400 et 800 nm. Dans le cas de nanosuspensions, des cristaux de docosanol de taille nanométrique ont été produits avec succès par broyage humide. Les nanoparticules de tailles variant de 197 nm à 312 nm ont été produites pour des pourcentages différents en docosanol, en polymère HPC et en surfactant SDS. Après lyophilisation, une augmentation de la taille dépendant de la composition de la formulation a été observée tout en restant dans la gamme nanométrique pour la totalité presque des formulations étudiées. Dans le cas des hydrogels examinés, la taille moyenne des particules de docosanol est maintenue dans la gamme nanométrique avant et après lyophilisation. L’analyse thermique des mélanges physiques, des nanosuspensions et des hydrogels de docosanol a révélé la conservation de l’état de cristallinité des nanocristaux de docosanol après broyage et aussi après gélification. L’examen par microscopie électronique à balayage (MEB) a montré que la nanosuspension et l’hydrogel ont tous deux une morphologie régulière et les nanoparticules ont une forme sphérique. De plus les nanoparticules de la nanosuspension ont presque la même taille inférieure à 300 nm en accord avec le résultat obtenu par diffusion dynamique de la lumière (DLS). Les nanoparticules de l’hydrogel ont une légère augmentation de taille par rapport à celle de la nanosuspension, ce qui est en accord avec les mesures de DLS. D’après les mesures rhéologiques, l’hydrogel de docosanol a un comportement pseudoplastique et un faible degré de thixotropie. L’étude de stabilité physique a montré que les formulations d’hydrogel sont stables à basse température (5°C) et à température ambiante (21°C) pendant une période d’incubation de 13 semaines et instable au-delà de 30°C après deux semaines. La méthode HPLC-ELSD a révélé des teneurs en docosanol comprises entre 90% et 110% dans le cas des nanosuspensions et aux alentours de 100% dans le cas de l’hydrogel. L’essai de diffusion in vitro a montré qu’il y a diffusion de docosanol de l’hydrogel à travers les membranes de polycarbonates, qui est plus marquée pour celle de pore 800 nm, tandis que celui du produit commercial Abreva® ne diffuse pas. Le broyage humide est une technique bien adaptée pour la préparation des nanosuspensions docosanol. Ces nanosuspensions peuvent être utilisée comme base pour la préparation de l’hydrogel de docosanol nanoformulé.
Resumo:
The mechanism of devulcanization of sulfur-vulcanized natural rubber with aromatic disulfides and aliphatic amines has been studied using 23-dimethyl-2-butene (C5H1,) as a low-molecular weight model compound. First C6H12 was vulcanized with a mixture of sulfur, zinc stearate and N-cyclohexyl-2-benzothiazylsulfenamide (CBS) as accelerator at 140 °C, resulting in a mixture of addition products (C(,H 1 i-S,-C5H 1 i ). The compounds were isolated and identified by High Performance Liquid Chromatography (HPLC) with respect to their various sulfur ranks. In it second stage, the vulcanized products were devulcanized using the agents mentioned above at 200 °C. The kinetics and chemistry of the breakdown of the sulfur-hridges were monitored. Both devulcanization agents decompose sulfidic vulcanization products with sulfur ranks equal or higher than 3 quite effectively and with comparable speed. Di phenyldisulfide as devulcanization agent gives rise to a high amount of mono- and disulfidic compounds formed during the devulcanization, hexadecylamine, as devulcanization agent, prevents these lower sulfur ranks from being formed.
Resumo:
This paper describes the use of a dental amalgam electrode (DAE) to evaluate the electrochemical behaviour and to develop an electroanalytical procedure for determination of diquat herbicide in natural water and potato samples. The work was based on the square wave voltammetry responses of diquat, which presented two well-defined and reversible reduction peaks, at -0.56 V (peak 1) and -1.00V (peak 2). The experimental and voltammetric parameters were optimised, and the analytical curves were constructed and compared to similar curves performed by high performance liquid chromatography coupled to ultraviolet-visible spectrophotometric detector (HPLC/UV-vis). The responses were directly proportional to diquat concentration in a large interval of concentration, and the calculated detection limits were very similar, around 10 mu g L(-1) (10 ppb) for voltammetric and chromatographic experiments. These values were lower than the maximum residue limit established for natural water by the Brazilian Environmental Agency. The recovery percentages in pure electrolyte, natural water and potato samples showed values from 70% to 130%, demonstrating that the voltammetric methodology proposed is suitable for determining any contamination by diquat in different samples, minimising the toxic residues due to the use of liquid mercury or the adsorptive process relative to use of other solid surfaces. (C) 2009 Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A simple and rapid method was developed for the determination of amfepramone hydrochloride, fenprorex, and diazepam in capsules using high performance liquid chromatography (HPLC) with UV detection. This procedure provided conditions for the separation of the active ingredient from the complex matrices of the dosage forms by extraction in methanol. Isocratic reversed phase chromatography was performed using acetonitrile, methanol, and aqueous 0,1% ammonium carbonate (50:10:40) as a mobile phase, LiChrospher 100 RP 18 column (125 x 5 mm id, 5 mu m), a column temperature of 25 +/- 1 degrees C and detection at 230 nm.The calibration curves were linear over a wide concentration range (20-2000 mu g.mL(-1) to amfepramone hydrochloride, 8-800 mu g.mL(-1) to fenproporex, and 4-200 mu g.mL(-1) to diazepam) and good analytical recovery (87.1 to 107.8%) was obtained. The method is accurate and precise, as well as having advantages such as simplicity and short duration of analysis. Twenty samples of pharmaceutical preparations labelled as natural products were analysed. Anorectics and diazepam, were detected in 40% of the samples.
Resumo:
A sensitive, accurate, reliable and easy method was developed for the quantification of oxamniquine in capsules using high-performance liquid chromatography (HPLC) with UV detection. This technique provided conditions for the separation of the active ingredient from the dosage form by extraction in methanol. Isocratic reversed phase chromatography was performed using methanol, water, and triethanolamine (60:40:0.099, v/v/w) (System C) or methanol, acetonitrile, water and formic acid (40:30:30:0.083, v/v/w) (System D) as mobile phase, a stainless steel column (125 x 4 mm i.d., 5 mum) filled with LiChrospher 100 RP-18 (Merck), column temperature of 28 +/- 2 degreesC and detection at 260 nm. The calibration curves were linear over a wide concentration range (1.0-20.0 mug ml(-1) of oxamniquine) to the Systems C and D with good correlation factor (0.9990 and 0.9982, respectively). The average content obtained were 100.1 +/- 1.5% (System C) and 102.4 +/- 0.8% (System D). The presence of lactose, starch, magnesium stearate and sodium laurylsulphate did not interfere in the results of the analysis. The above findings showed the proposed method to be both simple and added advantage of allowing for fast analysis. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this work is the treatment of produced water from oil by using electrochemical technology. Produced water is a major waste generated during the process of exploration and production in the oil industry. Several approaches are being studied aiming at the treatment of this effluent; among them can be cited the biological process and chemical treatments such as advanced oxidation process and electrochemical treatments (electrooxidation, electroflotation, electrocoagulation, electrocoagulation). This work studies the application of electrochemical technology in the treatment of the synthetic produced water effluent through the action of the electron, in order to remove or transform the toxic and harmful substances from the environment by redox reactions in less toxic substances. For this reason, we used a synthetic wastewater, containing a mixture H2SO4 0,5M and 16 HPAs, which are: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, chrysene, benzo(b)fluoranthene, benzo(k) fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a, h)anthracene, benzo(g, h, i)perylene. Bulk electrochemical oxidation experiments were performed using a batch electrochemical reactor containing a pair of parallel electrodes, coupled with a power supply using a magnetic stirrer for favoring the transfer mass control. As anodic material was used, a Dimensionally Stable Anode (DSA) of Ti/Pt, while as cathode was used a Ti electrode. Several samples were collected at specific times and after that, the analysis of these samples were carried out by using Gas Chromatography Coupled to Mass Spectrometry (GC - MS) in order to determine the percentage of removal. The results showed that it was possible to achieve the removal of HPAs about 80% (in some cases, more than 80%). In addition, as an indicator of the economic feasibility of electrochemical treatment the energy consumption was analyzed for each hour of electrolysis, and based on the value kWh charged by ANEEL, the costs were estimated. Thus, the treatment costs of this research were quite attractive
Resumo:
In the present study, the composition of essential oil of leaves and inflorescences of jambu (Spilanthes oleracea. Jambuarana), under organic manuring and mineral fertilization, was stuhed. Jambu plants show important chemical properties and their production has been addressed for the extraction of the essential oils for cosmetics industries, due to their pharmacolopcal properties. The experimental area of treatments contained urea as mineral fertilizer (120 g m2), applied twice and organic fertilizer (8 kg m2), applied at the planting. Jambu leaves and flowers were harvested twice: the first at 90 days after seedling transplantation and at the opening of the flower buds. Branches were cut at 7 cm from the soil, thus new branches can bud for the accomplishment of the second crop which happened 40 days after the re-budhng. The essential oil was analyzed by gas chromatography coupled with mass-spectrometry. According to our results the most representative compounds were trans-caryophyllene, germacrene-D, 1-dodecene, spathulenol and spilanthol (a compound presenting anesthetic properties) occurring in inflorescences. Fertilization procedure does not affect the content and the quality of the essential oil in Jambu plants. © 2012 Academic Journals Inc.
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA