867 resultados para Graph-based method


Relevância:

80.00% 80.00%

Publicador:

Resumo:

One approach to microbial genotyping is to make use of sets of single-nucleotide polymorphisms (SNPs) in combination with binary markers. Here we report the modification and automation of a SNP-plus-binary-marker-based approach to the genotyping of Staphylococcus aureus and its application to 391 S. aureus isolates from southeast Queensland, Australia. The SNPs used were arcC210, tpi243, arcC162, gmk318, pta294, tpi36, tpi241, and pta383. These provide a Simpson's index of diversity (D) of 0.95 with respect to the S. aureus multilocus sequence typing database and define 61 genotypes and the major clonal complexes. The binary markers used were pvl, cna, sdrE, pT181, and pUB110. Two novel real-time PCR formats for interrogating these markers were compared. One of these makes use of light upon extension (LUX) primers and biplexed reactions, while the other is a streamlined modification of kinetic PCR using SYBR green. The latter format proved to be more robust. In addition, automated methods for DNA template preparation, reaction setup, and data analysis were developed. A single SNP-based method for ST-93 (Queensland clone) identification was also devised. The genotyping revealed the numerical importance of the South West Pacific and Queensland community-acquired methicillin-resistant S. aureus (MRSA) clones and the clonal complex 239 Aus-1/Aus-2 hospital-associated MRSA. There was a strong association between the community-acquired clones and pvl.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Study Design. Development of an automatic measurement algorithm and comparison with manual measurement methods. Objectives. To develop a new computer-based method for automatic measurement of vertebral rotation in idiopathic scoliosis from computed tomography images and to compare the automatic method with two manual measurement techniques. Summary of Background Data. Techniques have been developed for vertebral rotation measurement in idiopathic scoliosis using plain radiographs, computed tomography, or magnetic resonance images. All of these techniques require manual selection of landmark points and are therefore subject to interobserver and intraobserver error. Methods. We developed a new method for automatic measurement of vertebral rotation in idiopathic scoliosis using a symmetry ratio algorithm. The automatic method provided values comparable with Aaro and Ho's manual measurement methods for a set of 19 transverse computed tomography slices through apical vertebrae, and with Aaro's method for a set of 204 reformatted computed tomography images through vertebral endplates. Results. Confidence intervals (95%) for intraobserver and interobserver variability using manual methods were in the range 5.5 to 7.2. The mean (+/- SD) difference between automatic and manual rotation measurements for the 19 apical images was -0.5 degrees +/- 3.3 degrees for Aaro's method and 0.7 degrees +/- 3.4 degrees for Ho's method. The mean (+/- SD) difference between automatic and manual rotation measurements for the 204 endplate images was 0.25 degrees +/- 3.8 degrees. Conclusions. The symmetry ratio algorithm allows automatic measurement of vertebral rotation in idiopathic scoliosis without intraobserver or interobserver error due to landmark point selection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of critical challenges in automatic recognition of TV commercials is to generate a unique, robust and compact signature. Uniqueness indicates the ability to identify the similarity among the commercial video clips which may have slight content variation. Robustness means the ability to match commercial video clips containing the same content but probably with different digitalization/encoding, some noise data, and/or transmission and recording distortion. Efficiency is about the capability of effectively matching commercial video sequences with a low computation cost and storage overhead. In this paper, we present a binary signature based method, which meets all the three criteria above, by combining the techniques of ordinal and color measurements. Experimental results on a real large commercial video database show that our novel approach delivers a significantly better performance comparing to the existing methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Management of collaborative business processes that span multiple business entities has emerged as a key requirement for business success. These processes are embedded in sets of rules describing complex message-based interactions between parties such that if a logical expression defined on the set of received messages is satisfied, one or more outgoing messages are dispatched. The execution of these processes presents significant challenges since each contentrich message may contribute towards the evaluation of multiple expressions in different ways and the sequence of message arrival cannot be predicted. These challenges must be overcome in order to develop an efficient execution strategy for collaborative processes in an intensive operating environment with a large number of rules and very high throughput of messages. In this paper, we present a discussion on issues relevant to the evaluation of such expressions and describe a basic query-based method for this purpose, including suggested indexes for improved performance. We conclude by identifying several potential future research directions in this area. © 2010 IEEE. All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new control algorithm using parallel braking resistor (BR) and serial fault current limiter (FCL) for power system transient stability enhancement is presented in this paper. The proposed control algorithm can prevent transient instability during first swing by immediately taking away the transient energy gained in faulted period. It can also reduce generator oscillation time and efficiently make system back to the post-fault equilibrium. The algorithm is based on a new system energy function based method to choose optimal switching point. The parallel BR and serial FCL resistor can be switched at the calculated optimal point to get the best control result. This method allows optimum dissipation of the transient energy caused by disturbance so to make system back to equilibrium in minimum time. Case studies are given to verify the efficiency and effectiveness of this new control algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Investment in mining projects, like most business investment, is susceptible to risk and uncertainty. The ability to effectively identify, assess and manage risk may enable strategic investments to be sheltered and operations to perform closer to their potential. In mining, geological uncertainty is seen as the major contributor to not meeting project expectations. The need to assess and manage geological risk for project valuation and decision-making translates to the need to assess and manage risk in any pertinent parameter of open pit design and production scheduling. This is achieved by taking geological uncertainty into account in the mine optimisation process. This thesis develops methods that enable geological uncertainty to be effectively modelled and the resulting risk in long-term production scheduling to be quantified and managed. One of the main accomplishments of this thesis is the development of a new, risk-based method for the optimisation of long-term production scheduling. In addition to maximising economic returns, the new method minimises the risk of deviating from production forecasts, given the understanding of the orebody. This ability represents a major advance in the risk management of open pit mining.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have carried out a discovery proteomics investigation aimed at identifying disease biomarkers present in saliva, and, more specifically, early biomarkers of inflammation. The proteomic characterization of saliva is possible due to the straightforward and non-invasive sample collection that allows repetitive analyses for pharmacokinetic studies. These advantages are particularly relevant in the case of newborn patients. The study was carried out with samples collected during the first 48 hours of life of the newborns according to an approved Ethic Committee procedure. In particular, the salivary samples were collected from healthy and infected (n=1) newborns. Proteins were extracted through cycles of sonication, precipitated in ice cold acetone, resuspended and resolved by 2D-electrophoresis. MALDI TOF/TOF mass spectrometry analysis was performed for each spot obtaining the proteins’ identifications. Then we compared healthy newborn salivary proteome and an infected newborn salivary proteome in order to investigate proteins differently expressed in inflammatory condition. In particular the protein alpha-1-antitrypsin (A1AT), correlated with inflammation, was detected differently expressed in the infected newborn saliva. Therefore, in the second part of the project we aimed to develop a robust LC-MS based method that identifies and quantifies this inflammatory protein within saliva that might represent the first relevant step to diagnose a condition of inflammation with a no-invasive assay. The same LC-MS method is also useful to investigate the presence of the F allelic variant of the A1AT in biological samples, which is correlated with the onset of pulmonary diseases. In the last part of the work we analysed newborn saliva samples in order to investigate how phospholipids and mediators of inflammation (eicosanoids) are subject to variations under inflammatory conditions and a trend was observed in lysophosphatidylcholines composition according to the inflammatory conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple method for training the dynamical behavior of a neural network is derived. It is applicable to any training problem in discrete-time networks with arbitrary feedback. The algorithm resembles back-propagation in that an error function is minimized using a gradient-based method, but the optimization is carried out in the hidden part of state space either instead of, or in addition to weight space. Computational results are presented for some simple dynamical training problems, one of which requires response to a signal 100 time steps in the past.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The n-tuple pattern recognition method has been tested using a selection of 11 large data sets from the European Community StatLog project, so that the results could be compared with those reported for the 23 other algorithms the project tested. The results indicate that this ultra-fast memory-based method is a viable competitor with the others, which include optimisation-based neural network algorithms, even though the theory of memory-based neural computing is less highly developed in terms of statistical theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we propose a data envelopment analysis (DEA) based method for assessing the comparative efficiencies of units operating production processes where input-output levels are inter-temporally dependent. One cause of inter-temporal dependence between input and output levels is capital stock which influences output levels over many production periods. Such units cannot be assessed by traditional or 'static' DEA which assumes input-output correspondences are contemporaneous in the sense that the output levels observed in a time period are the product solely of the input levels observed during that same period. The method developed in the paper overcomes the problem of inter-temporal input-output dependence by using input-output 'paths' mapped out by operating units over time as the basis of assessing them. As an application we compare the results of the dynamic and static model for a set of UK universities. The paper is suggested that dynamic model capture the efficiency better than static model. © 2003 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A recently proposed colour based tracking algorithm has been established to track objects in real circumstances [Zivkovic, Z., Krose, B. 2004. An EM-like algorithm for color-histogram-based object tracking. In: Proc, IEEE Conf. on Computer Vision and Pattern Recognition, pp. 798-803]. To improve the performance of this technique in complex scenes, in this paper we propose a new algorithm for optimally adapting the ellipse outlining the objects of interest. This paper presents a Lagrangian based method to integrate a regularising component into the covariance matrix to be computed. Technically, we intend to reduce the residuals between the estimated probability distribution and the expected one. We argue that, by doing this, the shape of the ellipse can be properly adapted in the tracking stage. Experimental results show that the proposed method has favourable performance in shape adaption and object localisation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hazard and operability (HAZOP) studies on chemical process plants are very time consuming, and often tedious, tasks. The requirement for HAZOP studies is that a team of experts systematically analyse every conceivable process deviation, identifying possible causes and any hazards that may result. The systematic nature of the task, and the fact that some team members may be unoccupied for much of the time, can lead to tedium, which in turn may lead to serious errors or omissions. An aid to HAZOP are fault trees, which present the system failure logic graphically such that the study team can readily assimilate their findings. Fault trees are also useful to the identification of design weaknesses, and may additionally be used to estimate the likelihood of hazardous events occurring. The one drawback of fault trees is that they are difficult to generate by hand. This is because of the sheer size and complexity of modern process plants. The work in this thesis proposed a computer-based method to aid the development of fault trees for chemical process plants. The aim is to produce concise, structured fault trees that are easy for analysts to understand. Standard plant input-output equation models for major process units are modified such that they include ancillary units and pipework. This results in a reduction in the nodes required to represent a plant. Control loops and protective systems are modelled as operators which act on process variables. This modelling maintains the functionality of loops, making fault tree generation easier and improving the structure of the fault trees produced. A method, called event ordering, is proposed which allows the magnitude of deviations of controlled or measured variables to be defined in terms of the control loops and protective systems with which they are associated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The World Wide Web provides plentiful contents for Web-based learning, but its hyperlink-based architecture connects Web resources for browsing freely rather than for effective learning. To support effective learning, an e-learning system should be able to discover and make use of the semantic communities and the emerging semantic relations in a dynamic complex network of learning resources. Previous graph-based community discovery approaches are limited in ability to discover semantic communities. This paper first suggests the Semantic Link Network (SLN), a loosely coupled semantic data model that can semantically link resources and derive out implicit semantic links according to a set of relational reasoning rules. By studying the intrinsic relationship between semantic communities and the semantic space of SLN, approaches to discovering reasoning-constraint, rule-constraint, and classification-constraint semantic communities are proposed. Further, the approaches, principles, and strategies for discovering emerging semantics in dynamic SLNs are studied. The basic laws of the semantic link network motion are revealed for the first time. An e-learning environment incorporating the proposed approaches, principles, and strategies to support effective discovery and learning is suggested.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Humans consciously and subconsciously establish various links, emerge semantic images and reason in mind, learn linking effect and rules, select linked individuals to interact, and form closed loops through links while co-experiencing in multiple spaces in lifetime. Machines are limited in these abilities although various graph-based models have been used to link resources in the cyber space. The following are fundamental limitations of machine intelligence: (1) machines know few links and rules in the physical space, physiological space, psychological space, socio space and mental space, so it is not realistic to expect machines to discover laws and solve problems in these spaces; and, (2) machines can only process pre-designed algorithms and data structures in the cyber space. They are limited in ability to go beyond the cyber space, to learn linking rules, to know the effect of linking, and to explain computing results according to physical, physiological, psychological and socio laws. Linking various spaces will create a complex space — the Cyber-Physical-Physiological-Psychological-Socio-Mental Environment CP3SME. Diverse spaces will emerge, evolve, compete and cooperate with each other to extend machine intelligence and human intelligence. From multi-disciplinary perspective, this paper reviews previous ideas on various links, introduces the concept of cyber-physical society, proposes the ideal of the CP3SME including its definition, characteristics, and multi-disciplinary revolution, and explores the methodology of linking through spaces for cyber-physical-socio intelligence. The methodology includes new models, principles, mechanisms, scientific issues, and philosophical explanation. The CP3SME aims at an ideal environment for humans to live and work. Exploration will go beyond previous ideals on intelligence and computing.