837 resultados para GA (Genetic Algorithm)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years genetic algorithms have emerged as a useful tool for the heuristic solution of complex discrete optimisation problems. In particular there has been considerable interest in their use in tackling problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle constraints and successful implementations usually require some sort of modification to enable the search to exploit problem specific knowledge in order to overcome this shortcoming. This paper is concerned with the development of a family of genetic algorithms for the solution of a nurse rostering problem at a major UK hospital. The hospital is made up of wards of up to 30 nurses. Each ward has its own group of nurses whose shifts have to be scheduled on a weekly basis. In addition to fulfilling the minimum demand for staff over three daily shifts, nurses’ wishes and qualifications have to be taken into account. The schedules must also be seen to be fair, in that unpopular shifts have to be spread evenly amongst all nurses, and other restrictions, such as team nursing and special conditions for senior staff, have to be satisfied. The basis of the family of genetic algorithms is a classical genetic algorithm consisting of n-point crossover, single-bit mutation and a rank-based selection. The solution space consists of all schedules in which each nurse works the required number of shifts, but the remaining constraints, both hard and soft, are relaxed and penalised in the fitness function. The talk will start with a detailed description of the problem and the initial implementation and will go on to highlight the shortcomings of such an approach, in terms of the key element of balancing feasibility, i.e. covering the demand and work regulations, and quality, as measured by the nurses’ preferences. A series of experiments involving parameter adaptation, niching, intelligent weights, delta coding, local hill climbing, migration and special selection rules will then be outlined and it will be shown how a series of these enhancements were able to eradicate these difficulties. Results based on several months’ real data will be used to measure the impact of each modification, and to show that the final algorithm is able to compete with a tabu search approach currently employed at the hospital. The talk will conclude with some observations as to the overall quality of this approach to this and similar problems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes for (sub-)fitness evaluation purposes are examined for two multiple-choice optimisation problems. It is shown that random partnering strategies perform best by providing better sampling and more diversity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the agents on solution quality are examined for two multiple-choice optimisation problems. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Programa de Pós-graduação em Integridade de Materiais da Engenharia, 2015.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les travaux de ce mémoire traitent du problème d’ordonnancement et d’optimisation de la production dans un environnement de plusieurs machines en présence de contraintes sur les ressources matérielles dans une usine d’extrusion plastique. La minimisation de la somme pondérée des retards est le critère économique autour duquel s’articule cette étude car il représente un critère très important pour le respect des délais. Dans ce mémoire, nous proposons une approche exacte via une formulation mathématique capable des donner des solutions optimales et une approche heuristique qui repose sur deux méthodes de construction de solution sérielle et parallèle et un ensemble de méthodes de recherche dans le voisinage (recuit-simulé, recherche avec tabous, GRASP et algorithme génétique) avec cinq variantes de voisinages. Pour être en totale conformité avec la réalité de l’industrie du plastique, nous avons pris en considération certaines caractéristiques très fréquentes telles que les temps de changement d’outils sur les machines lorsqu’un ordre de fabrication succède à un autre sur une machine donnée. La disponibilité des extrudeuses et des matrices d’extrusion représente le goulot d’étranglement dans ce problème d’ordonnancement. Des séries d’expérimentations basées sur des problèmes tests ont été effectuées pour évaluer la qualité de la solution obtenue avec les différents algorithmes proposés. L’analyse des résultats a démontré que les méthodes de construction de solution ne sont pas suffisantes pour assurer de bons résultats et que les méthodes de recherche dans le voisinage donnent des solutions de très bonne qualité. Le choix du voisinage est important pour raffiner la qualité de la solution obtenue. Mots-clés : ordonnancement, optimisation, extrusion, formulation mathématique, heuristique, recuit-simulé, recherche avec tabous, GRASP, algorithme génétique

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ce projet porte, dans un souci d’efficacité énergétique, sur la récupération d’énergie des rejets thermiques à basse température. Une analyse d’optimisation des technologies dans le but d’obtenir un système de revalorisation de chaleur rentable fait objet de cette recherche. Le but sera de soutirer la chaleur des rejets thermiques et de la réappliquer à un procédé industriel. Réduire la consommation énergétique d’une usine entre habituellement en conflit avec l’investissement requis pour les équipements de revalorisation de chaleur. Ce projet de maitrise porte sur l’application d’optimisations multiobjectives par algorithme génétique (GA) pour faciliter le design en retrofit des systèmes de revalorisation de chaleur industrielle. L’originalité de cette approche consiste à l’emploi du «fast non-dominant sorting genetic algorithm» ou NSGA-II dans le but de trouver les solutions optimales entre la valeur capitale et les pertes exergétiques des réseaux d’échangeurs de chaleur et de pompes à chaleur. Identifier les solutions optimales entre le coût et l’efficacité exergétique peut ensuite aider dans le processus de sélection d’un design approprié en considérant les coûts énergétiques. Afin de tester cette approche, une étude de cas est proposée pour la récupération de chaleur dans une usine de pâte et papier. Ceci inclut l’intégration d’échangeur de chaleur Shell&tube, d’échangeur à contact direct et de pompe à chaleur au réseau thermique existant. Pour l’étude de cas, le projet en collaboration avec Cascades est constitué de deux étapes, soit de ciblage et d’optimisation de solutions de retrofit du réseau d’échangeur de chaleur de l’usine de tissus Cascades à Kinsley Falls. L’étape de ciblage, basée sur la méthode d’analyse du pincement, permet d’identifier et de sélectionner les modifications de topologie du réseau d’échangeurs existant en y ajoutant de nouveaux équipements. Les scénarios résultants passent ensuite à l’étape d’optimisation où les modèles mathématiques pour chaque nouvel équipement sont optimisés afin de produire une courbe d’échange optimal entre le critère économique et exergétique. Pourquoi doubler l’analyse économique d’un critère d’exergie? D’abord, parce que les modèles économiques sont par définition de nature imprécise. Coupler les résultats des modèles économiques avec un critère exergétique permet d’identifier des solutions de retrofit plus efficaces sans trop s’éloigner d’un optimum économique. Ensuite, le rendement exergétique permet d’identifier les designs utilisant l’énergie de haute qualité, telle que l’électricité ou la vapeur, de façon plus efficace lorsque des sources d’énergie de basse qualité, telles que les effluents thermiques, sont disponibles. Ainsi en choisissant un design qui détruit moins d’exergie, il demandera un coût énergétique moindre. Les résultats de l’étude de cas publiés dans l’article montrent une possibilité de réduction des coûts en demande de vapeur de 89% tout en réduisant la destruction d’exergie de 82%. Dans certains cas de retrofit, la solution la plus justifiable économiquement est également très proche de la solution à destruction d’exergie minimale. L’analyse du réseau d’échangeurs et l’amélioration de son rendement exergétique permettront de justifier l’intégration de ces systèmes dans l’usine. Les diverses options pourront ensuite être considérées par Cascades pour leurs faisabilités technologiques et économiques sachant qu’elles ont été optimisées.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper compares the performance of the complex nonlinear least squares algorithm implemented in the LEVM/LEVMW software with the performance of a genetic algorithm in the characterization of an electrical impedance of known topology. The effect of the number of measured frequency points and of measurement uncertainty on the estimation of circuit parameters is presented. The analysis is performed on the equivalent circuit impedance of a humidity sensor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous work by Professor John Frazer on Evolutionary Architecture provides a basis for the development of a system evolving architectural envelopes in a generic and abstract manner. Recent research by the authors has focused on the implementation of a virtual environment for the automatic generation and exploration of complex forms and architectural envelopes based on solid modelling techniques and the integration of evolutionary algorithms, enhanced computational and mathematical models. Abstract data types are introduced for genotypes in a genetic algorithm order to develop complex models using generative and evolutionary computing techniques. Multi-objective optimisation techniques are employed for defining the fitness function in the evaluation process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper describes three design models that make use of generative and evolutionary systems. The models describe overall design methods and processes. Each model defines a set of tasks to be performed by the design team, and in each case one of the tasks requires a generative or evolutionary design system. The architectures of these systems are also broadly described.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mobile robots are widely used in many industrial fields. Research on path planning for mobile robots is one of the most important aspects in mobile robots research. Path planning for a mobile robot is to find a collision-free route, through the robot’s environment with obstacles, from a specified start location to a desired goal destination while satisfying certain optimization criteria. Most of the existing path planning methods, such as the visibility graph, the cell decomposition, and the potential field are designed with the focus on static environments, in which there are only stationary obstacles. However, in practical systems such as Marine Science Research, Robots in Mining Industry, and RoboCup games, robots usually face dynamic environments, in which both moving and stationary obstacles exist. Because of the complexity of the dynamic environments, research on path planning in the environments with dynamic obstacles is limited. Limited numbers of papers have been published in this area in comparison with hundreds of reports on path planning in stationary environments in the open literature. Recently, a genetic algorithm based approach has been introduced to plan the optimal path for a mobile robot in a dynamic environment with moving obstacles. However, with the increase of the number of the obstacles in the environment, and the changes of the moving speed and direction of the robot and obstacles, the size of the problem to be solved increases sharply. Consequently, the performance of the genetic algorithm based approach deteriorates significantly. This motivates the research of this work. This research develops and implements a simulated annealing algorithm based approach to find the optimal path for a mobile robot in a dynamic environment with moving obstacles. The simulated annealing algorithm is an optimization algorithm similar to the genetic algorithm in principle. However, our investigation and simulations have indicated that the simulated annealing algorithm based approach is simpler and easier to implement. Its performance is also shown to be superior to that of the genetic algorithm based approach in both online and offline processing times as well as in obtaining the optimal solution for path planning of the robot in the dynamic environment. The first step of many path planning methods is to search an initial feasible path for the robot. A commonly used method for searching the initial path is to randomly pick up some vertices of the obstacles in the search space. This is time consuming in both static and dynamic path planning, and has an important impact on the efficiency of the dynamic path planning. This research proposes a heuristic method to search the feasible initial path efficiently. Then, the heuristic method is incorporated into the proposed simulated annealing algorithm based approach for dynamic robot path planning. Simulation experiments have shown that with the incorporation of the heuristic method, the developed simulated annealing algorithm based approach requires much shorter processing time to get the optimal solutions in the dynamic path planning problem. Furthermore, the quality of the solution, as characterized by the length of the planned path, is also improved with the incorporated heuristic method in the simulated annealing based approach for both online and offline path planning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This approach to sustainable design explores the possibility of creating an architectural design process which can iteratively produce optimised and sustainable design solutions. Driven by an evolution process based on genetic algorithms, the system allows the designer to “design the building design generator” rather than to “designs the building”. The design concept is abstracted into a digital design schema, which allows transfer of the human creative vision into the rational language of a computer. The schema is then elaborated into the use of genetic algorithms to evolve innovative, performative and sustainable design solutions. The prioritisation of the project’s constraints and the subsequent design solutions synthesised during design generation are expected to resolve most of the major conflicts in the evaluation and optimisation phases. Mosques are used as the example building typology to ground the research activity. The spatial organisations of various mosque typologies are graphically represented by adjacency constraints between spaces. Each configuration is represented by a planar graph which is then translated into a non-orthogonal dual graph and fed into the genetic algorithm system with fixed constraints and expected performance criteria set to govern evolution. The resultant Hierarchical Evolutionary Algorithmic Design System is developed by linking the evaluation process with environmental assessment tools to rank the candidate designs. The proposed system generates the concept, the seed, and the schema, and has environmental performance as one of the main criteria in driving optimisation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The GuRoo is a 1.2 m tall, 23 degree of freedom humanoid constructed at the University of Queensland for research into humanoid robotics. The key challenge being addressed by the GuRoo project is the development of appropriate learning strategies for control and coordination of the robot's many joints. The development of learning strategies is seen as a way to side-step the inherent intricacy of modeling a multi-DOF biped robot. This paper outlines the approach taken to generate an appropriate control scheme for the joints of the GuRoo. The paper demonstrates the determination of local feedback control parameters using a genetic algorithm. The feedback loop is then augmented by a predictive modulator that learns a form of feed-forward control to overcome the irregular loads experienced at each joint during the gait cycle. The predictive modulator is based on the CMAC architecture. Results from tests on the GuRoo platform show that both systems provide improvements in stability and tracking of joint control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the application of advanced optimization techniques to unmanned aerial system mission path planning system (MPPS) using multi-objective evolutionary algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA nondominated sorting genetic algorithm II and a hybrid-game strategy are implemented to produce a set of optimal collision-free trajectories in a three-dimensional environment. The resulting trajectories on a three-dimensional terrain are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different positions with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a hybrid-game strategy to a MOEA and for a MPPS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the main aims in artificial intelligent system is to develop robust and efficient optimisation methods for Multi-Objective (MO) and Multidisciplinary Design (MDO) design problems. The paper investigates two different optimisation techniques for multi-objective design optimisation problems. The first optimisation method is a Non-Dominated Sorting Genetic Algorithm II (NSGA-II). The second method combines the concepts of Nash-equilibrium and Pareto optimality with Multi-Objective Evolutionary Algorithms (MOEAs) which is denoted as Hybrid-Game. Numerical results from the two approaches are compared in terms of the quality of model and computational expense. The benefit of using the distributed hybrid game methodology for multi-objective design problems is demonstrated.