1000 resultados para Experimentação Numérica
Resumo:
Publicação sobre as implicações da comunicação pedagógica em contextos heterogéneos, a partir da apresentação de um caso de uma aluna deslocada dos Açores para o continente português.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em hidráulica
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial
Resumo:
Neste artigo, vamos viajar no tempo e assistir ao nascimento do zero. (...) As origens da Matemática remontam a alguns milhares de anos antes das primeiras civilizações e derivaram da necessidade de contar objetos. Em primeiro lugar, foi necessário distinguir um objeto de muitos objetos (caçar um pássaro ou muitos pássaros). Com o passar do tempo, a linguagem desenvolveu-se para distinguir entre um, dois e muitos. Em seguida, um, dois, três e muitos. (...) O passo seguinte consistiu em agrupar objetos de forma a facilitar a contagem. (...) A verdade é que os antigos gostavam de contar com as partes do seu corpo. Os favoritos eram o 5 (uma mão), o 10 (as duas mãos) e o 20 (ambas as mãos e os pés). O sistema numérico de base 10 acabou por vingar em muitas culturas e isso refletiu-se no vocabulário que ainda hoje utilizamos. Em português, as palavras “onze”, “doze” e “treze” derivam do latim (undecim, duodecim e tredecim), significando “dez e um”, “dez e dois” e “dez e três”. (...) Os sistemas antigos de numeração não contemplaram o zero. A verdade é que ninguém precisava de registar “zero ovelhas” nem contar “zero aves”. Em vez de dizer “tenho zero lanças”, bastava afirmar “não tenho lanças”. Como não era preciso um número para expressar a falta de alguma coisa, não ocorreu a necessidade de atribuir um símbolo à ausência de objetos. (...) O sistema de numeração grego, tal como o egípcio, ignorou por completo o zero. O zero nasceu noutra zona do globo: no Oriente, concretamente, no Crescente Fértil do atual Iraque. O sistema de numeração babilónico era, de certa forma, invulgar. Os babilónios tinham um sistema sexagesimal, de base 60, e usavam apenas duas marcas para representar os seus números: uma cunha simples para representar o 1 e uma cunha dupla para representar o 10. (...) os babilónios tiveram uma excelente ideia: inventaram um sistema de numeração posicional, em que os números são representados por sequências de símbolos, sendo que o valor de cada símbolo depende da posição que ocupa nessa sequência. (...) Para os babilónios, o zero era um simples marca-lugar; um símbolo para uma casa em branco no ábaco. O zero não ocupava um lugar na hierarquia dos números; não tinha ainda assumido a sua posição estratégica na reta numérica como o número que separa os números positivos dos negativos. (...)
Resumo:
(...) Tal como os babilónios, os maias do México e da América Central criaram um sistema de numeração posicional. A diferença é que o sistema era vigesimal, de base 20. Os maias também recorriam ao zero para a escrita dos números e utilizavam dois tipos de dígitos (...) O sistema de numeração indiano acabou por evoluir de um sistema do tipo grego para um sistema do tipo babilónico (...) Os indianos encararam com naturalidade a existência de números negativos, bem como da reta numérica em que o zero assumia finalmente o estatuto de número com a posição estratégica de separar os números positivos dos negativos. (...) A própria palavra “zero” tem raízes hindu-árabes. O nome indiano para zero era sunya, que significava “vazio”. Os árabes transformaram-no em sifr. Por sua vez, os ocidentais adotaram uma designação que soasse a latim – zephirus, que é a raiz da nossa palavra “zero”. (...) No Ocidente, o medo do infinito e o horror ao vazio perpetuaram-se durante séculos. Partindo do universo pitagórico, Aristóteles e Ptolemeu defendiam um cosmos finito em extensão, mas cheio de matéria. O universo estava contido numa “casca de noz” revestida pela esfera das estrelas fixas. (...) A falta do zero não só impediu o desenvolvimento da Matemática no Ocidente como, indiretamente, introduziu alguma confusão no nosso calendário. Todos nos lembramos das dúvidas que surgiram com a viragem recente de século e milénio: deveríamos festejar a mudança de século e milénio na passagem de ano de 1999 para 2000 ou de 2000 para 2001? A resposta correta é a segunda opção e a justificação é simples: o nosso calendário não contempla o zero. (...) Com o Renascimento, o universo de casca de noz partiu-se, o vazio e o infinito ultrapassaram por completo os preconceitos da fundação aristotélica da Igreja e abriram caminho para um desenvolvimento notável da ciência e, em particular, da Matemática. O zero assumiu um papel chave no desenvolvimento de várias áreas da Matemática, entre elas destaca-se o cálculo diferencial e integral. O edifício matemático, que outrora tinha sido alicerçado partindo da necessidade de contar ovelhas e demarcar propriedades, erguia-se agora bem alto: as regras da Natureza podiam ser descritas por equações e a Matemática era a chave para desvendar os segredos do Universo. (...) O zero não pode ser ignorado. De facto, o zero está na base de muitos dos segredos do Universo, a desvendar neste novo milénio.
Resumo:
(...) Os number bonds (esquemas todo-partes) constituem um dos procedimentos didáticos mais famosos do Método de Singapura. Estas representações auxiliam a compreensão numérica basilar, nomeadamente a capacidade de decompor quantidades e a álgebra fundamental (adições e subtrações). Neste artigo, analisaremos o que são, quais as vantagens e a forma de utilização destes esquemas no 1.º ano de escolaridade. (...)
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
O nosso sistema de numeração decimal é um sistema de natureza posicional: os números são representados por sequências de símbolos, sendo que o valor de cada símbolo depende da posição que ocupa nessa sequência. Por exemplo, quando escrevemos o numeral relativo ao número treze, “13”, estamos na realidade a utilizar uma numeração mista: “1” vale uma dezena e “3” vale três unidades. Treze, na sua escrita matemática atual, traduz a organização uma dezena mais três unidades; dez unidades de uma ordem numérica são alvo de uma composição para uma unidade da ordem numérica seguinte, o que traduz a essência de um sistema posicional de base 10. Por isso, o “10” desempenha um papel de extrema importância e a forma como as crianças desenvolvem as primeiras explorações do nosso sistema de numeração é determinante para as suas aprendizagens futuras. (...) Para estimular uma verdadeira compreensão da ordem das dezenas, as atividades típicas são: (a) Separa 10 e diz o número; (b) Pinta 10 e diz o número; (c) Utilização de dispositivos com algarismos móveis (presentes em todos os manuais do bem sucedido método de Singapura). Vejamos como podemos promover a compreensão da ordem das dezenas e ultrapassar com eficácia a “barreira” do 10. (...)
Resumo:
Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.
Resumo:
Esta comunicação insere-se no Projeto “Pensamento numérico e cálculo flexível: Aspetos críticos”. Começa por discutir o que se entende por flexibilidade de cálculo e raciocínio quantitativo aditivo, discutindo depois os resultados de entrevistas individuais realizadas com quatro alunos (dois do 1.º ano e dois do 2.º ano) quando lhes foram propostas tarefas onde aqueles aspetos estavam presentes. Trata-se de um estudo exploratório cujo principal objetivo é compreender o raciocínio dos alunos quando resolvem tarefas numéricas envolvendo situações aditivas, e ainda identificar aspetos associados à flexibilidade de cálculo e ao raciocínio quantitativo. Os resultados mostram que, no caso dos alunos do 1.º ano, o seu desempenho parece estar relacionado com o seu desenvolvimento do sentido do número e com as relações que dominam. Para os alunos do 2.º ano, o raciocínio inversivo constituiu um aspeto crítico, que conseguiram mobilizar depois de superadas as dificuldades iniciais. Os resultados sugerem, ainda, que estes alunos concebem a diferença como uma relação invariante numérica.
Resumo:
Segundo consta, a primeira tentativa conhecida para representar números demasiadamente extensos foi realizada pelo notável matemático, físico e inventor grego Arquimedes (287 a.C – 212 a.C). O “pai da notação científica” descreveu-a na sua obra “O contador de Areia”, no século III a.C., depois de desenvolver um método de representação numérica para estimar quantos grãos de areia seriam necessários para preencher o universo. Já agora, o número estimado foi 10^63 (10 elevado a 63) grãos, ou seja, 1 seguido de 63 zeros. Neste artigo aborda-se a notação científica e a sua importância na escrita de pequenos e grandes números.
Resumo:
In Invisible Cities (1972), Italo Calvino contrasts a rigid outline structure with a flexible textual content. The tension comprised by the numerical structure proposed in the table of contents stands out against the set of polissemic texts which make up the subject matter of the book. The opposition between form and content point to a fruitful dichotomy in the conception of the novel linked to the theories of the open and closed work. This essay will investigate the structural construction of Invisible Cities by looking at its table of contents, seeking to discuss some models of formalistic representation proposed by the criticism and the specific contribution they may, or may not, provide. The objective is to analyse the pertinence of such theories in the light of historical and cultural approaches. Aiming to uncover possible meanings which arise from the debate, this essay will question to what extent structural complexities can be considered literary if they are not ultimately related to the culture in which a text is found.
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Educação Artística, na Especialização de Artes Plásticas na Educação
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e do 2.º Ciclo do Ensino Básico