969 resultados para EXPRESSING PERTUSSIS TOXIN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently demonstrated that Angiotensin-(3-4) [Ang-(3-4)], an Ang II-derived dipeptide, overcomes inhibition of plasma membrane Ca2+-ATPase promoted by nanomolar concentrations of Ang II in basolateral membranes of renal proximal tubule cells, with involvement of a so far unknown AT(2)R-dependent and NO-independent mechanism. The present study investigates the signaling pathway triggered by Ang-(3-4) that is responsible for counteracting the inhibitory effect of Ang II, and attempts to elucidate the functional interaction of the dipeptide with Ang II at the level of AT(2)R. Stimulation by cholera toxin of G(s)alpha protein structurally linked to AT(2)R as revealed by their co-immunoprecipitation mimicked the effect of Ang-(3-4) on Ca2+-ATPase activity. Furthermore, addition of dibutyril-cAMP (db-cAMP) mimicked Ang-(3-4), whereas the specific PKA inhibitor, PKAi((5-24)) peptide, suppressed the counter-regulatory effect of Ang-(3-4) and the AT(2)R agonist, CGP42112A. Membrane-associated PKA activity was stimulated by Ang-(3-4) or CGP42112A to comparable levels as db-cAMP, and the Ang-(3-4) effect was abrogated by the AT(2)R antagonist PD123319, whereas the AT(1)R antagonist Losartan had no effect. Ang-(3-4) stimulated PKA-mediated phosphorylation of Ca2+-ATPase and activated PKA to comparable levels. Binding assays demonstrated that Ang-(3-4) could not displace H-3-Ang II from HEK 293T cells expressing AT(2)R, but 10(-10) mol/L Ang-(3-4) resulted in the appearance of a probable higher-affinity site (picomolar range) for Ang II. The results presented herein demonstrate that Ang-(3-4), acting as an allosteric enhancer, suppresses Ang II-mediated inhibition of Ca2+-ATPase through an AT(2)R/cAMP/PKA pathway, after inducing conformational changes in AT(2)R that results in generation of higher-affinity sites for Ang II. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As perinatally HIV-1-infected children grow into adolescents and young adults, they are increasingly burdened with the long-term consequences of chronic HIV-1 infection, with long-term morbidity due to inadequate immunity. In progressive HIV-1 infection in horizontally infected adults, inflammation, T cell activation, and perturbed T cell differentiation lead to an "immune exhaustion'', with decline in T cell effector functions. T effector cells develop an increased expression of CD57 and loss of CD28, with an increase in co-inhibitory receptors such as PD-1 and Tim-3. Very little is known about HIV-1 induced T cell dysfunction in vertical infection. In two perinatally antiretroviral drug treated HIV-1-infected groups with median ages of 11.2 yr and 18.5 yr, matched for viral load, we found no difference in the proportion of senescent CD28(-)CD57(+)CD8(+) T cells between the groups. However, the frequency of Tim-3(+)CD8(+) and Tim-3(+)CD4(+) exhausted T cells, but not PD-1(+) T cells, was significantly increased in the adolescents with longer duration of infection compared to the children with shorter duration of HIV-1 infection. PD-1(+)CD8(+) T cells were directly associated with T cell immune activation in children. The frequency of Tim-3(+)CD8(+) T cells positively correlated with HIV-1 plasma viral load in the adolescents but not in the children. These data suggest that Tim-3 upregulation was driven by both HIV-1 viral replication and increased age, whereas PD-1 expression is associated with immune activation. These findings also suggest that the Tim-3 immune exhaustion phenotype rather than PD-1 or senescent cells plays an important role in age-related T cell dysfunction in perinatal HIV-1 infection. Targeting Tim-3 may serve as a novel therapeutic approach to improve immune control of virus replication and mitigate age related T cell exhaustion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rear-fanged and aglyphous snakes are usually considered not dangerous to humans because of their limited capacity of injecting venom. Therefore, only a few studies have been dedicated to characterizing the venom of the largest parcel of snake fauna. Here, we investigated the venom proteome of the rear-fanged snake Thamnodynastes strigatus, in combination with a transcriptomic evaluation of the venom gland. About 60% of all transcripts code for putative venom components. A striking finding is that the most abundant type of transcript (similar to 47%) and also the major protein type in the venom correspond to a new kind of matrix metalloproteinase (MMP) that is unrelated to the classical snake venom metalloproteinases found in all snake families. These enzymes were recently suggested as possible venom components, and we show here that they are proteolytically active and probably recruited to venom from a MMP-9 ancestor. Other unusual proteins were suggested to be venom components: a protein related to lactadherin and an EGF repeat-containing transcript. Despite these unusual molecules, seven toxin classes commonly found in typical venomous snakes are also present in the venom. These results support the evidence that the arsenals of these snakes are very diverse and harbor new types of biologically important molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human infections with EHEC such as O157:H7 have been a great concern for worldwide food-industry surveillance. This pathogen is commonly associated with bloody diarrhea that can evolve to the life-threatening hemolytic uremic syndrome. Animals are the natural reservoir where this pathogen remains asymptomatically, in steps of ingestion and colonization of the bowel. The bacterium is shed in the feces, contaminating the surroundings, including water and food that are directed for human consumption. A major player in this colonization process is intimin, an outer membrane adhesion molecule encoded by the E. coli attachment and effacement (eae) gene that has been shown to be essential for intimate bacterial attachment to eukaryotic host cells. In an attempt to reduce the colonization of animal reservoirs with EHEC O157:H7, we designed a vaccine model to induce an immune response against intimin gamma. The model is based on its recombinant expression in attenuated Salmonella, used as a suitable vaccine vector because of its recognized ability to deliver recombinant antigens and to elicit all forms of immunity: mucosal, systemic, and humoral responses. To test this model, mice were orally immunized with a S. enterica serovar Typhimurium strain carrying the pYA3137eaeA vector, and challenged with E. coli O157:H7. Here we show that immunization induced the production of high levels of specific IgG and IgA antibodies and promoted reduction in the fecal shedding of EHEC after challenge. The live recombinant vaccine reported herein may contribute to the efforts of reducing animal intestinal mucosa colonization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phoneutria nigriventer spider bite causes priapism, an effect attributed to the peptide toxins Tx2-5 and Tx2-6 and involving nitric oxide. Tx2-6 (MW = 5287) is known to delay the inactivation of Sodium channels in the same fashion as many other venom toxins. In the present study we evaluated the i.p. dose that induces priapism and the other symptoms in mice. Animals killed by the toxin or crude venom (0.85 mg/kg) were autopsied and a pathological study of brain, lung, kidney, liver and heart was undertaken using standard techniques. The same protocol was employed with animals injected with crude venom. Results showed that priapism is the first sign of intoxication, followed by piloerection, abundant salivation and tremors. An i.p. injection of about 0.3 mu g/kg induced only priapism with minimal side-effects. The most remarkable histological finding was a general vascular congestion in all organs studied. Penis showed no necrosis or damage. Lungs showed vascular congestion and alveolar hemorrhage. Heart showed also sub-endothelial hemorrhage. Brain showed only a mild edema and vascular congestion. Results obtained with crude venom closely resemble those of purified toxin. We conclude that Tx2-6 have profound effects on the vascular bed especially in lungs and heart, which may be the cause of death. Interestingly brain tissue was less affected and the observed edema may be attributed to respiratory impairment. To the best of our knowledge this is the first histopathological investigation on this toxin and venom suggesting a possible cause of death. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The in vitro production (IVP) of embryos by in vitro fertilization or cloning procedures has been known to cause epigenetic changes in the conceptus that in turn are associated with abnormalities in pre- and postnatal development. Handmade cloning (HMC) procedures and the culture of zona-free embryos in individual microwells provide excellent tools for studies in developmental biology, since embryo development and cell allocation patterns can be evaluated under a wide range of embryo reconstruction arrangements and in in vitro embryo culture conditions. As disturbances in embryonic cell allocation after in vitro embryo manipulations and unusual in vivo conditions during the first third of pregnancy appear to be associated with large offspring, embryo aggregation procedures may allow a compensation for epigenetic defects between aggregated embryos or even may influence more favorable cell allocation in embryonic lineages, favoring subsequent development. Thus, the aim of this study was to evaluate in vitro embryo developmental potential and the pattern of cell allocation in blastocysts developed after the aggregation of handmade cloned embryos produced using syngeneic wild type and/or transgenic somatic cells. Materials, Methods & Results: In vitro-matured bovine cumulus-oocyte complexes (COC) were manually bisected after cumulus and zona pellucida removal; then, two enucleated hemi-oocytes were paired and fused with either a wild type (WT) or a GFP-expressing (GFP) fetal skin cell at the 11th and 19th passages, respectively. Following chemical activation, reconstructed cloned embryos and zona-free parthenote embryos were in vitro-cultured in microwells, for 7 days, either individually (1 x 100%) or after the aggregation of two structures (2 x 100%) per microwell, as follows: (G1) one WT cloned embryo; (G2) two aggregated WT embryos; (G3) one GFP cloned embryo; (G4) two aggregated GFP embryos; (G5) aggregation of a WT embryo and a GFP embryo; (G6) one parthenote embryo; or (G7) two aggregated parthenote embryos. Fusion (clones), cleavage (Day 2), and blastocyst (Day 7) rates, and embryonic cell allocation were compared by the. 2 or Fisher tests. Total cell number (TCN) in blastocysts was analyzed by the Student's test (P < 0.05). Fusion and cleavage rates, and cell allocation were similar between groups. On a per WOW basis, development to the blastocyst stage was similar between groups, except for lower rates of development seen in G3. However, when based on number of embryos per group (one or two), blastocyst development was higher in G1 than all other groups, which were similar between one another. Cloned GFP embryos had lower in vitro development to the blastocyst stage than WT embryos, which had more TCN than parthenote or aggregated chimeric WT/GFP embryos. Aggregated GFP embryos had fewer cells than the other embryo groups. Discussion: The in vitro development of GFP cloned embryos was lower than WT embryos, with no effects on cell allocation in resulting blastocysts. Differences in blastocyst rate between groups were likely due to lower GFP-expressing cell viability, as GFP donor cells were at high population cell doublings when used for cloning. On a per embryo basis, embryo aggregation on Day 1 resulted in blastocyst development similar to non-aggregated embryos on Day 7, with no differences in cell proportion between groups. The use of GFP-expressing cells was proven a promising strategy for the study of cell allocation during embryo development, which may assist in the elucidation of mechanisms of abnormalities after in vitro embryo manipulations, leading to the development of improved protocols for the in vitro production (IVP) of bovine embryos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis. Results: Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized "Photorhabdus virulence cassettes (PVC)", PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative 'cheating' in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses. Conclusions: Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dengue virus non-structural 1 (NS1) protein contributes to evasion of host immune defenses and represents a target for immune responses. Evidences generated in experimental models, as well as the immune responses elicited by infected individuals, showed that induction of anti-NS1 immunity correlates with protective immunity but may also result in the generation of cross-reactive antibodies that recognize platelets and proteins involved in the coagulation cascade. In the present work, we evaluated the immune responses, protection to type 2 dengue virus (DENV2) challenges and safety parameters in BALB/c mice vaccinated with a recombinant NS1 protein in combination with three different adjuvants: aluminum hydroxide (alum), Freund's adjuvant (FA) or a genetically detoxified derivative of the heat-labile toxin (LTG33D), originally produced by some enterotoxigenic Escherichia coil (ETEC) strains. Mice were subcutaneously (s.c.) immunized with different vaccine formulations and the induced NS1-specific responses, including serum antibodies and T cell responses, were measured. Mice were also subjected to lethal challenges with the DENV2 NGC strain. The results showed that maximal protective immunity (50%) was achieved in mice vaccinated with NS1 in combination with LIG33D. Analyses of the NS1-specific immune responses showed that the anti-virus protection correlated mainly with the serum anti-NS1 antibody responses including higher avidity to the target antigen. Mice immunized with LTG33D elicited a prevailing IgG2a subclass response and generated antibodies with stronger affinity to the antigen than those generated in mice immunized with the other vaccine formulations. The vaccine formulations were also evaluated regarding induction of deleterious side effects and, in contrast to mice immunized with the FA-adjuvanted vaccine, no significant hepatic damage or enhanced C-reactive protein levels were detected in mice immunized with NS1 and LTG33D. Similarly, no detectable alterations in bleeding time and hematological parameters were detected in mice vaccinated with NS1 and LTG33D. Altogether, these results indicate that the combination of a purified recombinant NS1 and a nontoxic LT derivative is a promising alternative for the generation of safe and effective protein-based anti-dengue vaccine. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crotalus durissus terrificus snake venom (CdtV) has long-lasting anti-inflammatory properties and inhibits the spreading and phagocytic activity of macrophages. Crotoxin (CTX), the main component of CdtV, is responsible for these effects. Considering the role of neutrophils in the inflammatory response and the lack of information about the effect of CdtV on neutrophils, the aim of this study was to investigate the effect of CdtV and CTX on two functions of neutrophils, namely phagocytosis and production of reactive oxygen species, and on the intracellular signaling involved in phagocytosis, particularly on tyrosine phosphorylation and rearrangements of the actin cytoskeleton. Our results showed that the incubation of neutrophils with CdtV or CTX, at different concentrations, or the subcutaneous injection of CdtV or CTX in rats two hours or one, four or 14 days before or one hour after the induction of inflammation inhibited the phagocytic activity of neutrophils. Furthermore, these in vitro and in vivo effects were associated with CdtV and CTX inhibition of tyrosine phosphorylation and consequently actin polymerization. Despite the inhibitory effect on phagocytosis, this study demonstrated that CdtV and CTX did not alter the production of the main reactive oxygen species. Therefore, this study characterized, for the first time, the actions of CdtV on neutrophils and demonstrated that CTX induces a long-lasting inhibition of tyrosine phosphorylation and consequently phagocytosis. We suggest that CTX represents a potential natural product in controlling inflammatory diseases, since a single dose exerts a long-lasting effect on intracellular signaling involved in phagocytosis by neutrophils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bordetella avium is an opportunistic pathogen that presents tropism for ciliated epithelia, leading to upper respiratory tract disease in turkeys. This agent has also been associated with Lockjaw Syndrome in psittacine birds, but literatures describing the importance of this agent in such species are rare. The purpose of the present study was to report the first outbreak of B. avium infection in juvenile cockatiels demonstrating the Lockjaw Syndrome in Brazil and to investigate the antimicrobial resistance profile and phenotypic and genotypic characteristics of these strains. Surprising, the strains obtained from five infected cockatiel chicks from three different breeders from different Brazilian states showed a clonal relationship using the Pulsed Field Gel Electrophoresis and Single Enzyme Amplified Fragment Length Polymorphism techniques. The virulence potentials of the B. avium strains were assessed using tracheal adherence and cytotoxic effects on a VERO cell monolayer. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

alpha-KTx toxin Tc32, from the Amazonian scorpion Tityus cambridgei, lacks the dyad motif; including Lys27, characteristic of the family and generally associated with channel blockage. The toxin has been cloned and expressed for the first time. Electrophysiological experiments, by showing that the recombinant form blocks Kv1.3 channels of olfactory bulb periglomerular cells like the natural Tc32 toxin, when tested on the Kv1.3 channel of human T lymphocytes, confirmed it is in an active fold. The nuclear magnetic resonance-derived structure revealed it exhibits an alpha/beta scaffold typical of the members of the alpha-KTx family. TdK2 and TdK3, all belonging to the same alpha-KTx 18 subfamily, share significant sequence identity with Tc32 but diverse selectivity and affinity for Kv1.3 and Kv1.1 channels. To gain insight into the structural features that may justify those differences, we used the recombinant Tc32 nuclear magnetic resonance-derived structure to model the other two toxins, for which no experimental structure is available. Their interaction with Kv1.3 and Kv1.1 has been investigated by means of docking simulations. The results suggest that differences in the electrostatic features of the toxins and channels, in their contact surfaces, and in their total dipole moment orientations govern the affinity and selectivity of toxins. In addition, we found that, regardless of whether the dyad motif is present, it is always a Lys side chain that physically blocks the channels, irrespective of its position in the toxin sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Intestinal ischemia followed by reperfusion (I/R) may occur following intestinal obstruction. In rats, I/R in the small intestine leads to structural changes accompanied by neuronal death. AIM: To analyze the impact of I/R injury on different neuronal populations in the myenteric plexus of rat ileum. METHODS: The ileal artery was occluded for 35 min and animals were euthanized 6, 24, and 72 h, and 1 week later. Immunohistochemistry was performed with antibodies against the P2X7 receptor as well as nitric oxide synthase (NOS), calbindin, calretinin, choline acetyltransferase (ChAT), or the pan-neuronal marker anti-HuC/D. RESULTS: Double immunolabeling demonstrated that 100% of NOS-, calbindin-, calretinin-, and ChAT-immunoreactive neurons in all groups expressed the P2X7 receptor. Following I/R, neuronal density decreased by 22.6% in P2X7 receptor-immunoreactive neurons, and decreased by 46.7, 38, 39.8, 21.7, and 20% in NOS-, calbindin-, calretinin-, ChAT-, and HuC/D-immunoreactive neurons, respectively, at 6, 24, and 72 h and 1 week following injury compared to the control and sham groups. We also observed a 14% increase in the neuronal cell body profile area of the NOS-immunoreactive neurons at 6 and 24 h post-I/R and a 14% increase in ChAT-immunoreactive neurons at 1 week following I/R. However, the average size of the calretinin-immunoreactive neurons was reduced by 12% at 6 h post-I/R and increased by 8% at 24 h post-I/R. CONCLUSIONS: This work demonstrates that I/R is associated with a significant loss of different subpopulations of neurons in the myenteric plexus accompanied by morphological changes, all of which may underlie conditions related to intestinal motility disorder

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregatibacter actinomycetemcomitans is an important periodontal pathogen that can participate in periodontitis and other non-oral infections. The cytolethal distending toxin (Cdt) is among the virulence factors produced by this bacterium. The Cdt is also secreted by several mucosa-associated Gram-negative pathogens and may play a role in perpetuating the infection by modulating the immune response. Although the toxin targets a wide range of eukaryotic cell types little is known about its activity on macrophages which play a key part in alerting the rest of the immune system to the presence of pathogens and their virulence factors. In view of this, we tested the hypothesis that the A. actinomycetemcomitans Cdt (AaCdt) disrupts macrophage function by inhibiting phagocytic activity as well as affecting the production of cytokines. Murine macrophages were co-cultured with either wild-type A. actinomycetemcomitans or a Cdt(-) mutant. Viable counts and qPCR showed that phagocytosis of the wild-type strain was significantly reduced relative to that of the Cdt(-) mutant. Addition of recombinant Aa(r)Cdt to co-cultures along with the Cdt(-) mutant diminished the phagocytic activity similar to that observed with the wild type strain. High concentrations of Aa(r)Cdt resulted in decreased phagocytosis of fluorescent bioparticles. Nitric oxide production was modulated by the presence of Cdt and the levels of IL-1β, IL-12 and IL-10 were increased. Production of TNF-α did not differ in the co-culture assays but was increased by the presence of Aa(r)Cdt. These data suggest that the Cdt may modulate macrophage function in A. actinomycetemcomitans infected sites by impairing phagocytosis and modifying the pro-inflammatory/anti-inflammatory cytokine balance.