881 resultados para Digtially-Driven Transformations
Resumo:
We consider an array of N Josephson junctions connected in parallel and explore the condition for chaotic synchronization. It is found that the outer junctions can be synchronized while they remain uncorrelated to the inner ones when an external biasing is applied. The stability of the solution is found out for the outer junctions in the synchronization manifold. Symmetry considerations lead to a situation wherein the inner junctions can synchronize for certain values of the parameter. In the presence of a phase difference between the applied fields, all the junctions exhibit phase synchronization. It is also found that chaotic motion changes to periodic in the presence of phase differences.
Resumo:
Using a scaling assumption, we propose a phenomenological model aimed to describe the joint probability distribution of two magnitudes A and T characterizing the spatial and temporal scales of a set of avalanches. The model also describes the correlation function of a sequence of such avalanches. As an example we study the joint distribution of amplitudes and durations of the acoustic emission signals observed in martensitic transformations [Vives et al., preceding paper, Phys. Rev. B 52, 12 644 (1995)].
Resumo:
This work presents an analysis of hysteresis and dissipation in quasistatically driven disordered systems. The study is based on the random field Ising model with fluctuationless dynamics. It enables us to sort out the fraction of the energy input by the driving field stored in the system and the fraction dissipated in every step of the transformation. The dissipation is directly related to the occurrence of avalanches, and does not scale with the size of Barkhausen magnetization jumps. In addition, the change in magnetic field between avalanches provides a measure of the energy barriers between consecutive metastable states
Resumo:
A general introduction to the problems faced in the shrimp culture due to waste formation and its consequent environmental hazards and production problems of Giant tiger shrimp, Penaeus monodon is highlighted by the author in this thesis. The objective of the present work was to assess the potential of brackish water finfish to improve bottom soil conditions and thereby increase the growth and production of Penaeus monodon. The salient findings of the present study are summarized in chapter 7. This is followed by the references cited in the thesis and list ofpublications originated from the present study.
Resumo:
It has been shown recently that systems driven with random pulses show the signature of chaos ,even without non linear dynamics.This shows that the relation between randomness and chaos is much closer than it was understood earlier .The effect of random perturbations on synchronization can be also different. In some cases identical random perturbations acting on two different chaotic systems induce synchronizations. However most commonly ,the effect of random fluctuations on the synchronizations of chaotic system is to destroy synchronization. This thesis deals with the effect of random fluctuations with its associated characteristic timescales on chaos and synchronization. The author tries to unearth yet another manifestation of randomness on chaos and sychroniztion. This thesis is organized into six chapters.
Resumo:
The multifractal dimension of chaotic attractors has been studied in a weakly coupled superlattice driven by an incommensurate sinusoidal voltage as a function of the driving voltage amplitude. The derived multifractal dimension for the observed bifurcation sequence shows different characteristics for chaotic, quasiperiodic, and frequency-locked attractors. In the chaotic regime, strange attractors are observed. Even in the quasiperiodic regime, attractors with a certain degree of strangeness may exist. From the observed multifractal dimensions, the deterministic nature of the chaotic oscillations is clearly identified.
Resumo:
Self-sustained time-dependent current oscillations under dc voltage bias have been observed in recent experiments on n-doped semiconductor superlattices with sequential resonant tunneling. The current oscillations are caused by the motion and recycling of the domain wall separating low- and high-electric-field regions of the superlattice, as the analysis of a discrete drift model shows and experimental evidence supports. Numerical simulation shows that different nonlinear dynamical regimes of the domain wall appear when an external microwave signal is superimposed on the dc bias and its driving frequency and driving amplitude vary. On the frequency-amplitude parameter plane, there are regions of entrainment and quasiperiodicity forming Arnold tongues. Chaos is demonstrated to appear at the boundaries of the tongues and in the regions where they overlap. Coexistence of up to four electric-field domains randomly nucleated in space is detected under ac+dc driving.
Resumo:
the author has designed few barrelene molecules in such a way that the structural features of these compounds will enable them to undergo intriguing triplet state mediated di- -methane rearrangement. The strategy involved the preparation of dibenzobarrelenes appended with a fused ring systems, thereby restricting the rotational freedom of the bridgehead substituent. We describe these systems as ‘tethered barrelenes’. These tethered barrelenes enabled us to examine the effect of orientation and the nature of the bridgehead-substituents in controlling the regioselectivity of di-π-methane rearrangement in a more systematic fashion. In this background, the thesis entitled “SYNTHESIS AND PHOTOCHEMICAL TRANSFORMATIONS OF A FEW TETHERED BARRELENES” reveals our attempts to explore the factors controlling the regioselectivity of di-π-methane rearrangement displayed by dibenzobarrelenes. Moreover, we have observed interesting dark reactions of suitable substituted tethered dibenzosemibullvalenes in a few cases
Resumo:
In this thesis, certain continuous time inventory problems with positive service time under local purchase guided by N/T-policy are analysed. In most of the cases analysed, we arrive at stochastic decomposition of system states, that is, the joint distribution of the system states is obtained as the product of marginal distributions of the components. The thesis is divided into ve chapters
Resumo:
Neueste Entwicklungen in Technologien für dezentrale Energieversorgungsstrukturen, erneuerbare Energien, Großhandelsenergiemarkt, Mini- und Mikronetze, verteilte Intelligenz, sowie Informations- und Datenübertragungstechnologien werden die zukünftige Energiewelt maßgeblich bestimmen. Die derzeitigen Forschungsbemühungen zur Vernutzung aller dieser Technologien bilden die Voraussetzungen für ein zukünftiges, intelligentes Stromnetz. Dieses neue Konzept gründet sich auf die folgenden Säulen: Die Versorgung erfolgt durch dezentrale Erzeugungsanlagen und nicht mehr durch große zentrale Erzeuger; die Steuerung beeinflusst nicht mehr allein die Versorgung sondern ermöglich eine auch aktive Führung des Bedarf; die Eingabeparameter des Systems sind nicht mehr nur mechanische oder elektrische Kenngrößen sondern auch Preissignale; die erneuerbaren Energieträger sind nicht mehr nur angeschlossen, sondern voll ins Energienetz integriert. Die vorgelegte Arbeit fügt sich in dieses neue Konzept des intelligenten Stromnetz ein. Da das zukünftige Stromnetz dezentral konfiguriert sein wird, ist eine Übergangsphase notwendig. Dieser Übergang benötigt Technologien, die alle diese neue Konzepte in die derzeitigen Stromnetze integrieren können. Diese Arbeit beweist, dass ein Mininetz in einem Netzabschnitt mittlerer Größe als netzschützende Element wirken kann. Hierfür wurde ein neues Energiemanagementsystem für Mininetze – das CMS (englisch: Cluster Management System) – entwickelt. Diese CMS funktioniert als eine von ökonomischorientierte Betriebsoptimierung und wirkt wie eine intelligente Last auf das System ein, reagierend auf Preissignale. Sobald wird durch eine Frequenzsenkung eine Überlastung des Systems bemerkt, ändert das Mininetz sein Verhalten und regelt seine Belastung, um die Stabilisierung des Hauptnetzes zu unterstützen. Die Wirksamkeit und die Realisierbarkeit des einwickelten Konzept wurde mit Hilfe von Simulationen und erfolgreichen Laborversuchen bewiesen.
Resumo:
Genetic programming is known to provide good solutions for many problems like the evolution of network protocols and distributed algorithms. In such cases it is most likely a hardwired module of a design framework that assists the engineer to optimize specific aspects of the system to be developed. It provides its results in a fixed format through an internal interface. In this paper we show how the utility of genetic programming can be increased remarkably by isolating it as a component and integrating it into the model-driven software development process. Our genetic programming framework produces XMI-encoded UML models that can easily be loaded into widely available modeling tools which in turn posses code generation as well as additional analysis and test capabilities. We use the evolution of a distributed election algorithm as an example to illustrate how genetic programming can be combined with model-driven development. This example clearly illustrates the advantages of our approach – the generation of source code in different programming languages.
Resumo:
Urban environmental depletion has been a critical problem among industrialized-transformed societies, especially at the local level where administrative authorities’ capacity lags behind changes. Derived from governance concept, the idea of civil society inclusion is highlighted. Focusing on an agglomerated case study, Bang Plee Community in Thailand, this research investigates on a non-state sector, 201-Community organization, as an agent for changes to improve urban environments on solid waste collection. Two roles are contested: as an agent for neighborhood internal change and as an intermediary toward governance changes in state-civil society interaction. By employing longitudinal analysis via a project intervention as research experiment, the outcomes of both roles are detected portrayed in three spheres: state, state-civil society interaction, and civil society sphere. It discovers in the research regarding agglomerated context that as an internal changes for environmental betterment, 201-Community organization operation brings on waste reduction at the minimal level. Community-based organization as an agent for changes – despite capacity input it still limited in efficiency and effectiveness – can mobilize fruitfully only at the individual and network level of civil society sectors, while fails managing at the organizational level. The positive outcomes result by economic waste incentive associated with a limited-bonded group rather than the rise of awareness at large. As an intermediary agent for shared governance, the community-based organization cannot bring on mutual dialogue with state as much as cannot change the state’s operation arena of solid waste management. The findings confine the shared governance concept that it does not applicable in agglomerated locality as an effective outcome, both in terms of being instrumental toward civil society inclusion and being provocative of internal change. Shared environmental governance as summarized in this research can last merely a community development action. It distances significantly from civil society inclusion and empowerment. However, the research proposes that community-based environmental management and shared governance toward civil society inclusion in urban environmental improvement are still an expectable option and reachable if their factors and conditions of key success and failure are intersected with a particular context. Further studies demand more precise on scale, scope, and theses factors of environmental management operation operated by civil society sectors.
Resumo:
The interaction of short intense laser pulses with atoms/molecules produces a multitude of highly nonlinear processes requiring a non-perturbative treatment. Detailed study of these highly nonlinear processes by numerically solving the time-dependent Schrodinger equation becomes a daunting task when the number of degrees of freedom is large. Also the coupling between the electronic and nuclear degrees of freedom further aggravates the computational problems. In the present work we show that the time-dependent Hartree (TDH) approximation, which neglects the correlation effects, gives unreliable description of the system dynamics both in the absence and presence of an external field. A theoretical framework is required that treats the electrons and nuclei on equal footing and fully quantum mechanically. To address this issue we discuss two approaches, namely the multicomponent density functional theory (MCDFT) and the multiconfiguration time-dependent Hartree (MCTDH) method, that go beyond the TDH approximation and describe the correlated electron-nuclear dynamics accurately. In the MCDFT framework, where the time-dependent electronic and nuclear densities are the basic variables, we discuss an algorithm to calculate the exact Kohn-Sham (KS) potentials for small model systems. By simulating the photodissociation process in a model hydrogen molecular ion, we show that the exact KS potentials contain all the many-body effects and give an insight into the system dynamics. In the MCTDH approach, the wave function is expanded as a sum of products of single-particle functions (SPFs). The MCTDH method is able to describe the electron-nuclear correlation effects as the SPFs and the expansion coefficients evolve in time and give an accurate description of the system dynamics. We show that the MCTDH method is suitable to study a variety of processes such as the fragmentation of molecules, high-order harmonic generation, the two-center interference effect, and the lochfrass effect. We discuss these phenomena in a model hydrogen molecular ion and a model hydrogen molecule. Inclusion of absorbing boundaries in the mean-field approximation and its consequences are discussed using the model hydrogen molecular ion. To this end, two types of calculations are considered: (i) a variational approach with a complex absorbing potential included in the full many-particle Hamiltonian and (ii) an approach in the spirit of time-dependent density functional theory (TDDFT), including complex absorbing potentials in the single-particle equations. It is elucidated that for small grids the TDDFT approach is superior to the variational approach.