978 resultados para Differentiable dynamical systems
Resumo:
A dynamical systems approach to the study of locomotor intralimb coordination in those with hemiparesis led to an examination of the utility of the shank-thigh relative phase (RP) as a collective variable and the identification of potential constraints that may shape this coordination. Eighteen non-disabled individuals formed three groups matched to the age and gender of six participants with chronic right hemiparesis. The three groups differed in the constraints imposed on their walking: (1) walking at their preferred walking speed; (2) walking as slowly as those with hemiparesis; and, (3) walking slowly with a right ankle-foot orthosis (AFO). The results revealed an asymmetry in intralimb coordination between the unaffected and affected leg of those with hemiparesis localized to the latter third of the gait cycle when the limb is advanced from the end of stance to the reestablishment of a new stance. Walking slowly with or without an AFO resulted in no measureable effect in the non-disabled, but accounts for 22% of the variance in the intralimb coordination of the hemiplegic's affected limb and 16% in the unaffected limb. The AFO offered little additional contribution. These results derive from shank-thigh RP that is shown to provide more information about intralimb coordination than knee angle displacement. Implications for these results and the use of RP for rehabilitation are discussed. (C) 2000 Elsevier B.V. B.V. All rights reserved. PsycINFO classification. 3297. 2330.
Resumo:
Gravitational capture is a characteristic of some dynamical systems in celestial mechanics, as in the elliptic restricted three-body problem that is considered in this paper. The basic idea is that a spacecraft (or any particle with negligible mass) can change a hyperbolic orbit with a small positive energy around a celestial body into an elliptic orbit with a small negative energy without the use of any propulsive system. The force responsible for this modification in the orbit of the spacecraft is the gravitational force of the third body involved in the dynamics. In this way, this force is used as a zero cost control, equivalent to a continuous thrust applied in the spacecraft. One of the most important applications of this property is the construction of trajectories to the Moon. The objective of the present paper is to study in some detail the effects of the eccentricity of the primaries in this maneuver.
Resumo:
We prove that a 'positive probability' subset of the boundary of '{uniformly expanding circle transformations}' consists of Kupka-Smale maps. More precisely, we construct an open class of two-parameter families of circle maps (f(alpha,theta))(alpha,theta) such that, for a positive Lebesgue measure subset of values of alpha, the family (f(alpha,theta))(theta) crosses the boundary of the uniformly expanding domain at a map for which all periodic points are hyperbolic (expanding) and no critical point is pre-periodic. Furthermore, these maps admit an absolutely continuous invariant measure. We also provide information about the geometry of the boundary of the set of hyperbolic maps.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Strategies for plane change of Earth orbits using lunar gravity and derived trajectories of family G
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the existence of periodic solutions in the neighbourhood of symmetric (partially) elliptic equilibria in purely reversible Hamiltonian vector fields. These are Hamiltonian vector fields with an involutory reversing symmetry R. We contrast the cases where R acts symplectically and anti-symplectically. In case R acts anti-symplectically, generically purely imaginary eigenvalues are isolated, and the equilibrium is contained in a local two-dimensional invariant manifold containing symmetric periodic solutions encircling the equilibrium point. In case R acts symplectically, generically purely imaginary eigenvalues are doubly degenerate, and the equilibrium is contained in two two-dimensional invariant manifolds containing nonsymmetric periodic solutions encircling the equilibrium point. In addition, there exists a three-dimensional invariant surface containing a two-parameter family of symmetric periodic solutions.
Resumo:
Forecasting, for obvious reasons, often become the most important goal to be achieved. For spatially extended systems (e.g. atmospheric system) where the local nonlinearities lead to the most unpredictable chaotic evolution, it is highly desirable to have a simple diagnostic tool to identify regions of predictable behaviour. In this paper, we discuss the use of the bred vector (BV) dimension, a recently introduced statistics, to identify the regimes where a finite time forecast is feasible. Using the tools from dynamical systems theory and Bayesian modelling, we show the finite time predictability in two-dimensional coupled map lattices in the regions of low BV dimension. © Indian Academy of Sciences.
Resumo:
We study non-hyperbolic repellers of diffeomorphisms derived from transitive Anosov diffeomorphisms with unstable dimension 2 through a Hopf bifurcation. Using some recent abstract results about non-uniformly expanding maps with holes, by ourselves and by Dysman, we show that the Hausdorff dimension and the limit capacity (box dimension) of the repeller are strictly less than the dimension of the ambient manifold.
Resumo:
The impact of new advanced technology on issues that concern meaningful information and its relation to studies of intelligence constitutes the main topic of the present paper. The advantages, disadvantages and implications of the synthetic methodology developed by cognitive scientists, according to which mechanical models of the mind, such as computer simulations or self-organizing robots, may provide good explanatory tools to investigate cognition, are discussed. A difficulty with this methodology is pointed out, namely the use of meaningless information to explain intelligent behavior that incorporates meaningful information. In this context, it is inquired what are the contributions of cognitive science to contemporary studies of intelligent behavior and how technology may play a role in the analysis of the relationships established by organisms in their natural and social environments. © John Benjamins Publishing Company.
Resumo:
Gravitational capture is a characteristic of some dynamical systems in celestial mechanics, as in the elliptic restricted three-body problem that is considered in this paper. The basic idea is that a spacecraft (or any particle with negligible mass) can change a hyperbolic orbit with a small positive energy around a celestial body into an elliptic orbit with a small negative energy without the use of any propulsive system. The force responsible for this modification in the orbit of the spacecraft is the gravitational force of the third body involved in the dynamics. In this way, this force is used as a zero cost control, equivalent to a continuous thrust applied in the spacecraft. One of the most important applications of this property is the construction of trajectories to the Moon. The objective of the present paper is to study in some detail the effects of the eccentricity of the primaries in this maneuver.
Resumo:
We prove that Hénon-like strange attractors of diffeomorphisms in any dimensions, such as considered in [2],[7], and [9] support a unique Sinai-Ruelle-Bowen (SRB) measure and have the no-hole property: Lebesgue almost every point in the basin of attraction is generic for the SRB measure. This extends two-dimensional results of Benedicks-Young [4] and Benedicks-Viana [3], respectively.
Resumo:
We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.
Resumo:
In practical situations, the dynamics of the forcing function on a vibrating system cannot be considered as given a priori, and it must be taken as a consequence of the dynamics of the whole system. In other words, the forcing source has limited power, as that provided by a DC motor for an example, and thus its own dynamics is influenced by that of the vibrating system being forced. This increases the number of degrees of freedom of the problem, and it is called a non-ideal problem. In this work, we considerer two non-ideal problems analyzed by using numerical simulations. The existence of the Sommerfeld effect was verified, that is, the effect of getting stuck at resonance (energy imparted to the DC motor being used to excite large amplitude motions of the supporting structure). We considered two kinds of non-ideal problem: one related to the transverse vibrations of a shaft carrying two disks and another to a piezoceramic bar transducer powered by a vacuum tube generated by a non-ideal source Copyright © 2007 by ASME.
Resumo:
In this paper, a mathematical model is derived via Lagrange's Equation for a shear building structure that acts as a foundation of a non-ideal direct current electric motor, controlled by a mass loose inside a circular carving. Non-ideal sources of vibrations of structures are those whose characteristics are coupled to the motion of the structure, not being a function of time only as in the ideal case. Thus, in this case, an additional equation of motion is written, related to the motor rotation, coupled to the equation describing the horizontal motion of the shear building. This kind of problem can lead to the so-called Sommerfeld effect: steady state frequencies of the motor will usually increase as more power (voltage) is given to it in a step-by-step fashion. When a resonance condition with the structure is reached, the better part of this energy is consumed to generate large amplitude vibrations of the foundation without sensible change of the motor frequency as before. If additional increase steps in voltage are made, one may reach a situation where the rotor will jump to higher rotation regimes, no steady states being stable in between. As a device of passive control of both large amplitude vibrations and the Sommerfeld effect, a scheme is proposed using a point mass free to bounce back and forth inside a circular carving in the suspended mass of the structure. Numerical simulations of the model are also presented Copyright © 2007 by ASME.