704 resultados para DIETARY RESTRICTION
Resumo:
Increasingly invasive bladder cancer cells lines displayed insensitivity toward a panel of dietary-derived ligands for members of the nuclear receptor superfamily. Insensitivity was defined through altered gene regulatory actions and cell proliferation and reflected both reduced receptor expression and elevated nuclear receptor corepressor 1 (NCOR1) expression. Stable overexpression of NCOR1 in sensitive cells (RT4) resulted in a panel of clones that recapitulated the resistant phenotype in terms of gene regulatory actions and proliferative responses toward ligand. Similarly, silencing RNA approaches to NCOR1 in resistant cells (EJ28) enhanced ligand gene regulatory and proliferation responses, including those mediated by peroxisome proliferator-activated receptor (PPAR) gamma and vitamin D receptor (VDR) receptors. Elevated NCOR1 levels generate an epigenetic lesion to target in resistant cells using the histone deacetylase inhibitor vorinostat, in combination with nuclear receptor ligands. Such treatments revealed strong-additive interactions toward the PPARgamma, VDR and Farnesoid X-activated receptors. Genome-wide microarray and microfluidic quantitative real-time, reverse transcription-polymerase chain reaction approaches, following the targeting of NCOR1 activity and expression, revealed the selective capacity of this corepressor to govern common transcriptional events of underlying networks. Combined these findings suggest that NCOR1 is a selective regulator of nuclear receptors, notably PPARgamma and VDR, and contributes to their loss of sensitivity. Combinations of epigenetic therapies that target NCOR1 may prove effective, even when receptor expression is reduced.
Resumo:
People in developing countries have faced multigenerational undernutrition and are currently undergoing major lifestyle changes, contributing to an epidemic of metabolic diseases, though the underlying mechanisms remain unclear. Using a Wistar rat model of undernutrition over 50 generations, we show that Undernourished rats exhibit low birth-weight, high visceral adiposity (DXA/MRI), and insulin resistance (hyperinsulinemic-euglycemic clamps), compared to age-/gender-matched control rats. Undernourished rats also have higher circulating insulin, homocysteine, endotoxin and leptin levels, lower adiponectin, vitamin B12 and folate levels, and an 8-fold increased susceptibility to Streptozotocin-induced diabetes compared to control rats. Importantly, these metabolic abnormalities are not reversed after two generations of unrestricted access to commercial chow (nutrient recuperation). Altered epigenetic signatures in insulin-2 gene promoter region of Undernourished rats are not reversed by nutrient recuperation, and may contribute to the persistent detrimental metabolic profiles in similar multigenerational undernourished human populations.
Resumo:
SCOPE: Aflatoxin exposure coincides with micronutrient deficiencies in developing countries. Animal feeding studies have postulated that aflatoxin exposure may be exacerbating micronutrient deficiencies. Evidence available in human subjects is limited and inconsistent. The aim of the study was to investigate the relationship between aflatoxin exposure and micronutrient status among young Guinean children.
METHOD AND RESULTS: A total of 305 children (28.8 ± 8.4 months) were recruited at groundnut harvest (rainy season), of which 288 were followed up 6 months later post-harvest (dry season). Blood samples were collected at each visit. Aflatoxin-albumin adduct levels were measured by ELISA. Vitamin A, vitamin E and β-carotene concentrations were measured using HPLC methods. Zinc was measured by atomic absorption spectroscopy. Aflatoxin exposure and micronutrient deficiencies were prevalent in this population and were influenced by season, with levels increasing between harvest and post-harvest. At harvest, children in the highest aflatoxin exposure group, compared to the lowest, were 1.98 (95%CI: 1.00, 3.92) and 3.56 (95%CI: 1.13, 11.15) times more likely to be zinc and vitamin A deficient.
CONCLUSION: Although children with high aflatoxin exposure levels were more likely to be zinc and vitamin A deficient, further research is necessary to determine a cause and effect relationship.
Resumo:
BACKGROUND: Observational studies suggest that patients with heart failure have a tendency to a reduced status of a number of micronutrients and that this may be associated with an adverse prognosis. A small number of studies also suggest that patients with heart failure may have reduced dietary intake of micronutrients, a possible mechanism for reduced status.
OBJECTIVE: The aims of this study were to assess dietary micronutrient intake and micronutrient status in a group of patients with heart failure.
METHODS: Dietary intake was assessed in 79 outpatients with chronic stable heart failure with a reduced ejection fraction using a validated food frequency questionnaire. Blood concentrations of a number of micronutrients, including vitamin D, were measured in fasting blood samples, drawn at the time of food frequency questionnaire completion.
RESULTS: More than 20% of patients reported intakes less than the reference nutrient intake or recommended intake for riboflavin, vitamin D, vitamin A, calcium, magnesium, potassium, zinc, copper, selenium, and iodine. More than 5% of patients reported intakes less than the lower reference nutrient intake or minimum recommended intake for riboflavin, vitamin D, vitamin A, calcium, magnesium, potassium, zinc, selenium, and iodine. Vitamin D deficiency (plasma total 25-hydroxy-vitamin D concentration <50 nmol/L) was observed in 75.6% of patients.
CONCLUSIONS: Vitamin D deficiency was common in this group of patients with heart failure. Based on self-reported dietary intake, a substantial number of individuals may not have been consuming enough vitamin D and a modest number of individuals may not have been consuming enough riboflavin, vitamin A, calcium, magnesium, potassium, zinc, copper, selenium, or iodine to meet their dietary needs.
Resumo:
Heterocyclic aromatic amines (HCA) are carcinogenic mutagens formed during cooking of protein-rich foods. HCA residues adducted to blood proteins have been postulated as biomarkers of HCA exposure. However, the viability of quantifying HCAs following hydrolytic release from adducts in vivo and correlation with dietary intake are unproven. To definitively assess the potential of labile HCA-protein adducts as biomarkers, a highly sensitive UPLC-MS/MS method was validated for four major HCAs: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx). Limits of detection were 1e5 pg/ml plasma and recoveries 91e115%. Efficacy of hydrolysis was demonstrated by HCA-protein adducts synthesised in vitro. Plasma and 7-day food diaries were collected from 122 fasting adults consuming their habitual diets. Estimated HCA intakes ranged from 0 to 2.5 mg/day. An extensive range of hydrolysis conditions was examined for release of adducted HCAs in plasma. HCA was detected in only one sample (PhIP, 9.7 pg/ml), demonstrating conclusively for the first time that acid-labile HCA adducts do not reflect dietary HCA intake and are present at such low concentrations that they are not feasible biomarkers of exposure. Identification of biomarkers remains important. The search should concentrate on stabilised HCA peptide markers and use of untargeted proteomic and metabolomic approaches.
Resumo:
The notion of educating the public through generic healthy eating messages has pervaded dietary health promotion efforts over the years and continues to do so through various media, despite little evidence for any enduring impact upon eating behaviour. There is growing evidence, however, that tailored interventions such as those that could be delivered online can be effective in bringing about healthy dietary behaviour change. The present paper brings together evidence from qualitative and quantitative studies that have considered the public perspective of genomics, nutrigenomics and personalised nutrition, including those conducted as part of the EU-funded Food4Me project. Such studies have consistently indicated that although the public hold positive views about nutrigenomics and personalised nutrition, they have reservations about the service providers' ability to ensure the secure handling of health data. Technological innovation has driven the concept of personalised nutrition forward and now a further technological leap is required to ensure the privacy of online service delivery systems and to protect data gathered in the process of designing personalised nutrition therapies.
Resumo:
In the European Union the turn towards renewable energy sources has increased the production of biodiesel from rapeseed oil, leaving glycerol (also known as glycerin) as a valuable by-product. For every litre of biodiesel produced, approximately 79 g of crude glycerol are generated. As the biodiesel production grows, the quantity of crude glycerol generated will be considerable and its utilization will become an urgent topic. One possibility is the use of crude glycerol on animal feeds. Glycerol has been evaluated as a dietary energy source for several farm animals, including fish. A study was undertaken to assess the effect of dietary biodiesel-derived glycerol (from rapeseed oil) on the overall growth performance, digestive capacity and metabolic nutrient utilization in juvenile gilthead seabream fed a low fishmeal level diet. Two practical diets were formulated to be isonitrogenous (crude protein, 45.4% DM), isolipidic (18.5% DM) and isoenergetic (gross energy, 21.3 kJ/g DM). The control diet (CTRL) was formulated with intermediate levels of marine-derived proteins (19%). In the same basal formulation, 5% glycerol (GLY) was incorporated at the expenses of wheat. Each dietary treatment was tested in triplicate tanks over 63 days, with 20 gilthead seabream (Sparus aurata), with a mean initial body weight (IBW) of 27.9 0.12 g. At the end of the trial, fish fed the CTRL diet reached a final body weight of 84.3 2.2 g (more than 3-fold increase of initial body weight). Fish fed the GLY diet showed a significantly higher (P<0.05) growth, expressed in terms of final body weight and specific growth rate. Voluntary feed intake was similar between the two treatments, but both feed efficiency and protein efficiency ratio were significantly improved (P<0.05) in fish fed the GLY diet. Dietary glycerol had no effect (P>0.05) on the apparent digestibility of protein. In comparison to the control treatment, dietary glycerol significantly improved (P<0.05) protein and fat retention. Activities of digestive enzymes were significantly affected by the various dietary treatments. Fish fed the GLY diet showed an enhanced activity of alkaline phosphatase (ALP) and pepsin, while activities of lipase and leucine-alanine peptidase (LAP) were little affected by dietary glycerol. Fish show the ability to use crude glycerol as a dietary energy substrate.
Resumo:
Tese de doutoramento, Ciências da Vida, do Mar, da Terra e do Ambiente (Nutrição), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Tese de doutoramento, Ciências Biomédicas (Ciências Funcionais), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
Tese de mestrado em Biologia Evolutiva e do Desenvolvimento, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016
Resumo:
Background and aim: Cardiorespiratory fitness (CRF) and diet have been involved as significant factors towards the prevention of cardio-metabolic diseases. This study aimed to assess the impact of the combined associations of CRF and adherence to the Southern European Atlantic Diet (SEADiet) on the clustering of metabolic risk factors in adolescents. Methods and Results: A cross-sectional school-based study was conducted on 468 adolescents aged 15-18, from the Azorean Islands, Portugal. We measured fasting glucose, insulin, total cholesterol (TC), HDL-cholesterol, triglycerides, systolic blood pressure, waits circumference and height. HOMA, TC/HDL-C ratio and waist-to-height ratio were calculated. For each of these variables, a Z-score was computed by age and sex. A metabolic risk score (MRS) was constructed by summing the Z scores of all individual risk factors. High risk was considered when the individual had 1SD of this score. CRF was measured with the 20 m-Shuttle-Run- Test. Adherence to SEADiet was assessed with a semi-quantitative food frequency questionnaire. Logistic regression showed that, after adjusting for potential confounders, unfit adolescents with low adherence to SEADiet had the highest odds of having MRS (OR Z 9.4; 95%CI:2.6e33.3) followed by the unfit ones with high adherence to the SEADiet (OR Z 6.6; 95% CI: 1.9e22.5) when compared to those who were fit and had higher adherence to SEADiet.
Resumo:
Among aminoacidopathies, phenylketonuria (PKU) is the most prevalent one. Early diagnosis in the neonatal period with a prompt nutritional therapy (low natural-protein and phenylalanine diet, supplemented with phenylalanine-free amino acid mixtures and special low-protein foods) remains the mainstay of the treatment. Data considering nutrient contents of cooked dishes is lacking. In this study, fourteen dishes specifically prepared for PKU individuals were analysed, regarding the lipid profile and iron and zinc contents. These dishes are poor sources of essential nutrients like Fe, Zn or n-3 fatty acids, reinforcing the need for adequate supplementation to cover individual patients’ needs. This study can contribute to a more accurate adjustment of PKU diets and supplementation in order to prevent eventual nutritional deficiencies. This study contributes to a better understanding of nutrient intake from PKU patients’ meals, showing the need for dietary supplementation.